微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 一种无回馈交流变频主电路的分析

一种无回馈交流变频主电路的分析

时间:06-08 来源:互联网 点击:

系列的损耗。

3 双绕组的无回馈逆变与电磁振动控制

  在将三相定子绕组分解成末端相联的双绕组时,其6 个绕组的首端对应联接于桥路中点分别串联1 只反向整流管的三相逆变桥的6个输出端上,如图2 所示。

  采用双绕组做法,尤其是定子绕组采用单层结构并将同一相两绕组间隔360毅槽电势相角排布时,利用两绕组之间的磁耦合相对减弱的特点,并结合两个绕组首端联接的整流管就可实现无功电流的自回馈。例如在T1导通而对绕组Wa1进行正半波的通流期间,当脉波电流从幅值下降而使电势变为负值时,此负向电势对绕组Wa2与整流管D7 构成电感的放电回路,使绕组Wa1 中储存的电感能量自行转移于绕组Wa2;Wa2在脉波电流下降时,对绕组Wa1及整流管D7进行电感放电而形成感性无功能量的转移过程。这种相互间释放或吸收电感能量的作用是以相互间的磁耦合关系较弱为前提,尤其是控制成组的电磁铁而进行排移性的振动成型时,自回馈效应更为明显。

  在双绕组的无回馈变频控制扩展成6耀18 个桥路的逆变桥与主电容桥及副电容桥时,其12耀36 个输出端联接的12耀36 只电磁线圈,便可在依次通流的12耀36 节拍的控制中,使排列成矩阵的电磁铁及弹簧形成排移振动过程。这种由6耀18 对电磁线圈构成的双绕组电路结构,其无功电流经由整流管的自回馈更具有明显的节能效果,并可在LC 的谐振中形成人造石英石薄板振动成型工艺中有较好的致密效果。

4 换流回路参数的计算

  以图2 的三相逆变桥控制6 个电磁线圈为例初步计算主电路的参数,具体对晶闸管T1控制电磁铁线圈Wa1,并同主电容桥的C1与C4构成的回路进行计算。由于C1和C4构成的两个回路的初始电压值近于相同,因此可将Wa1分解成并联的两路,设电阻与电感分别为R 与L。简化的等值电路如图3所示。根据电工基础的电容充、放原理,并用拉氏变换与反变换,可推导出两个回路的电流方程为

  在电磁线圈中实际流过的电流是ic1 与ic4 的合成值,其第一个脉波电流近似为正弦波。在计算异步电动机的换流参数时,要考虑旋转电势影响因素,电容器容量的选择要兼顾电流幅值与谐振角频率两方面的因素。

5 结语

  无回馈逆变形成的双电容谐振通流方式,不仅实现了普通晶闸管的关断,还在突发性的电容电压作用中实现了感性绕组的快速通流,从而在电流相位的前移中产生无功功率充分补偿的节电效应。调节副电容桥的容量是保持转速及电流稳定的主导调节方式,并在维持电流幅值及脉波宽度近于恒定的调节中,以增大脉波之间的宽度方式而降低频率。本电路易于制造高电压及大容量的调速装置,也易于变换成6相或18相而扩展应用于其他设备的控制。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top