模块电源辅助功能的研制
时间,这段时间称之为输出电压保持时间。
对于机载设备,按照国军标GJB181-86对用电设备的要求,输出保持时间有两个含义。一是指当输入电压欠压时,即直流输入电压降到8V,交流输入电压降到70V时,系统应能满足50ms的保持时间要求,也就是系统要能正常工作50ms。另一种是指当输入电压彻底断开时,系统输出电压能够保持多长时间,使得系统仍能够工作。
3.2 保持时间的计算方法
3.2.1 交流输入的保持时间计算
交流输入整流电路和整流波形分别见图4,图5。
图4 交流输入整流电路
图5 交流输入的整流波形
从图5中可以看出,从t0时刻开始,整流桥输出电压大于储能电容器C上的电压,整流桥导通,输入电网对C充电,同时向负载提供能量。在t1时刻,整流桥输出电压达到最大值,限流电阻R上的电压也达到最大值URm。然后整流桥电压开始下跌,C也开始放电,并和电网一起通过开关向负载提供能量直至t2时刻。而此时刻整流桥上的电压与电容上的电压相等,电阻R上的电压为零。在以后的t2~t3时间内,电容器处于放电状态,C放电直至t3时刻结束。
从以上的描述中,可以把在放电后t2至t3这一段时间称为输出电压维持时间tk,用公式表示为
tk=t3-t2 (1)
当t0到t1、t2的时间远小于tk时,则可近似认为电容C在tk时间内向负载提供能量,也即是开关电源的输入功率Pi.如果用U2、U3表示t2、t3时刻对应的输入电压,则维持时间可用公式表示为
tk= (2)
3.2.2 直流供电的开关电源保持时间
在直流供电条件下,开关电源输出保持时间tk的计算公式是
tk= (3)
式中:U2--输入电压最低时的电压值;
U3--输出电压下降到临界值时对应的输入电压。
3.3 延长输出保持时间的方法
由上述分析结果可以看出,输出保持时间的长短主要与输入电容Ci,电源输入功率Pi,t2、t3时刻对应的电压值U2、U3有关外,还与输出电容和输出负载也有一定的关系。虽然增加输出电容量亦可增加保持时间,然而增加输出电容量就意味着增加电源的体积和重量,而放电时间相对于充电时间较快,且与负载有关,因此相对于输入电容,输出电容对保持时间的影响几乎可以忽略不计。在体积重量允许的情况下,采取多个电容并联的方式来增大Ci容量,可延长输出保持时间。然而,随着输入电容的增大,电源启动瞬间的浪涌电流也会增大,使得功率管的峰值电流应力增加,从而增加了功率管的成本,降低了电路开启工作的可靠性。权衡考虑,除增加储能电容的容量外,适当设计辅助电路,使其在电网正常时不工作,仅仅在欠压瞬间工作,这样就可以减小启动瞬间的浪涌电流,提高正常工作时的电源效率,并且能够延长输出电压的保持时间。
对于直流供电的模块电源一般采用辅助升压电路,当供电电源低于某一设定值时,升压电路开始工作,将输入电压升高,使得在低输入电压情况下电源也能正常工作,从而拉宽了电网的工作范围,使电源在低电压和断电两种情况下的保持时间均得到了延长。
对于交流供电的模块电源,一般的模块电源均能满足宽输入电压的要求,因此延长保持时间主要指的是延长输入电压断电时的保持时间,采用图6所示的辅助电路可以将电源的保持时间延长将近1倍。其工作原理是,当输入电压正常时,电容C2上的电压为整流后的电压,且该电压经过二极管D和电阻R向电容C1充电,一旦电容C2上的电压低于C1上的电压,二极管D截止,电容C1上存储一定的电压,功率管Q1不导通时,只有电容C2上的电压加至模块电源上。当输入电压下降后,其它检测单路输出的控制信号加至Q2上,使Q1导通,而此时电容C2上的电压低于C1上的电压,这样C1上的电压向模块供电,相当于模块电源的输入电压升高,其结果必然使输出保持时间延长,而这部分电路在电网正常时并不工作,因此不会带来启动瞬间电流增大的问题。
图6 延长保持时间电路图
4 结语
由于使用了过、欠压保护电路,不仅使电源本身的保护能力得到加强,也使得电源的智能化水平有所提高。将电源正常指示信号和过、欠压信号通过接口电路加到计算机上,可以方便地检测电源的工作,提高电源的可测试性,进而提高了电源的可维护性。
使用辅助电路延长输出电压的保持时间,不仅电路结构简单,而且也较好地解决了增大输入电容与延长保持时间之间的矛盾,降低了起动瞬间的浪涌电流。
正是由于使用了上述电路,增大和完善了模块电源的功能,加上模块电源本身所具有的体积小、重量轻、集成度高和可靠性高等优点,模块电源势必会在机载领域得到广泛的应用。
- 基于LM5025的有源箝位模块电源设计(09-10)
- VICOR DC/DC模块及其应用(05-04)
- 模块电源的热分析及处理设计(06-08)
- 印刷电路板的一些注意事项(08-31)
- 牛人分享:模块电源的散热应对措施(10-16)
- 如何选择DC/DC模块电源(01-06)