微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 通信应用中差分电路设计的相关技术

通信应用中差分电路设计的相关技术

时间:01-26 来源:21ic 点击:

单端信号利用无源变压器在ADC前转换为差分信号。这里要注意一下,假设ADC的终端匹配阻抗为200Ω,而由于前面各级都是50Ω的特征阻抗,所以将变压器的阻抗比设为1:4。

  如果把变压器提前,将信号在运放前就转换为差分信号,则单端运放换成差分运放,这样即构成全差分结构。如图5所示。

这里要讲到级联系统总体噪声系数和输入输出三阶截点的等效计算。当考虑总体的噪声系数时,第一级的影响最大;而考虑截点指标时,最后一级的影响最明显。

  再考虑一下无杂散动态范围与系统三阶截点的关系,我们知道随着输入信号能量增加,三阶交调失真和噪声底刚好相等时,系统达到最大的SFDR,此时可以用这个式子来表示:SFDR = (2/3)(IIP3-NF-10log( TERMAL NOISE)。

  于是我们可以算出刚才提到的两种单端转差分方式,总体产生的信号增益、三阶截点、噪声系数和无杂散动态范围。从指标上看相差不多,差分有源驱动的结构总体失真和噪声系数略高,但是SFDR性能也高一些。另外要注意,在单端无源转换结构中,如果去掉中频放大器,满幅的参考输入功率为6dBm,且抗混叠滤波器的设计是非对称的结构。而且整个设计要加入更多阻性匹配器件,这就要求前级驱动的能力要强,也就是说电流和功耗要大。另外,单端运放的偶次谐波,共模抑制,电源抑制问题也都会一定程度上影响整体系统的性能。

  另一方面,在传送数据时,可以一位一位地传,也可以将其分割成符号进行传送,比如每个符号两比特,然后将其分别对应到4种相位上,之后再作用到载波上进行传送。这是一种很常见的调制模式,即QPSK。

  通常情况,我们可以用星座图来描述不同的调制方式,我们知道高阶的调制可用于更高数据速率的收发器中,但同时需要更低的本振泄漏、更好功放线性度、更高的系统带宽和解调器信噪比。一方面呢,ADI也在开发更高性能的产品以满足客户的需要,另一方面我们也要在系统设计时注意发掘问题的原理,并采用适当的方法和技巧加以解决。

  图6中我们可以看出接收系统中的噪声和谐波对误差向量幅度EVM的影响。也就是说,解调出来的信号相对理想的星座图位置会有所偏移,一般我们用误差向量幅度来衡量,过大的误差向量幅度会导致符号错误并恶化位出错率。特别在高阶调制方式时,符号之间的位置更近,对误差向量幅度的要求更严格。

图4 单端输入单端输出的例子

图5 全差分结构的例子

图6 接收系统中的噪声和谐波对误差向量幅度EVM的影响

  由此我们可以得出,更高阶的调制有着更高的数据速率,同时也要有更好的EVM,而更好的EVM意味着较高的无杂散动态范围SFDR,而SFDR又与信噪比、交调失真和各次谐波项相关。所以要提高以上这些性能指标,采用平衡信号、差分结构即可得到显著改善。

  总结

  最后,对于好的射频系统来讲,主要关注的是如何提高对有用信号的敏感度,从而更好地将信号从噪声、谐波和各种干扰中分离出来。而差分应用的好处就在于更好的共模抑制、电源抑制、抗电磁干扰能力、更好的线性度以及同等条件下相对单端信号更大的动态范围。无疑,差分结构优势明显,更多也更适合用于高性能的射频系统。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top