微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 基于MC56F8323的单相功率因数校正模块的应用

基于MC56F8323的单相功率因数校正模块的应用

时间:01-05 来源:21ic 点击:

制参数如表1及表2所列。为了保证在输入电压大范围变化时系统性能始终达到最佳态,当输入电压有效值为11OV和220V时电流环分别采用不同的PT参数,这也是模拟控制所无法做到的。

由于DSP的控制是一种离散的数字控制,它只能根据采样时刻的偏差值计算控制量,因此,必须对上式进行离散化处理,用一系列采样时刻点k代表连续的时间t,离散的PI控制算法表达式为

  式中:k=0,1,2……表示采样序列;u(k)表示第k次采样时刻PI调节器的输出值;e(k)表示第k次采样时刻输入的偏差值;Ts表示采样周期;TI表示积分时间常数;Kp为比例系数;Ki为积分系数。

  数字控制程序是由主程序和中断服务子程序组成,主要的功能模块包括电压环计算、电流环计算、PWM输出刷新以及故障保护等中断模块,其软件系统结构如表3所列。

  3 系统实验

  本文在基于MC56F8323的数字平台上对一台500W的PFC电路模块样机进行了实验验证,证明了在高频功率变换应用中,使用数字控制不仅可以完成传统模拟控制功能,而且在全输入范围内都能保持较高的功率因数,具有更佳的系统性能。

  MC56F8323的基本特征与资源利用情况如表4所列。样机的输入电压范围为全球通用交流输入,即输入电压范围设计为AC85~265v,图3为输入电压有效值为110V,输出满载时的输入电压和输入电流波形,其中通道1为电压波形,通道2为电流采样波形。电压的采样比例为1:500,电流采样的比例为1:lO,此时输入电流THD为8.6%,输入功率因数为0.994;图4为输入电压有效值为220V,输出满载时的输入电压和电流波形,通道说明和采样比例同前,此时输入电流THD为10.5%,输入功率因数为0.994。实验表明当输出满载功率不变时,输入电压在AC 85~265V的范围内变化时,输入电流无论是波形还是相位都跟踪输入电压波形,数字PFC控制始终可以使电路保持很高的功率因数。

  表5和表6分别为输入电压在110V和220V情况下,输出负载变化时的实验数据,从这些数据可以看出,当负载从满载到空载变化时,输出电压保持恒定不变,输入功率因数始终都维持在较高水平。实验表明该数字控制的功率因数校正系统在较大负载变化范围内均有较好的性能。

  4 结语

  数字控制已成为电力电子研究领域的一个重要发展方向,基于DSP的控制技术在电力电子领域的运用也逐渐普及并受到市场的充分肯定。数字控制在功率因数校正模块中的应用研究,不仅给出了完整的功率因数校正中的DSP控制解决方案,而且将DSP控制与电力电子专业应用更紧密地结合在一起,为电力电子设汁提供了一种新思路。本文首先给出了基于MC56F8323的功率因数校正应用的控制原理以及设计方法,最后做出了一台500W数字功率因数校正模块样机,并用实验验证了数字控制系统的优良性能。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top