电源内阻:扼杀DC-DC转换效率的元凶
时间:01-22
来源:EDN
点击:
DC-DC转换器非常普遍地应用于电池供电设备或其它要求省电的应用中。类似于线性稳压器,DC-DC转换器能够产生一个更低的稳定电压。然而,与线性稳压器不同的是,DC-DC转换器还能够提升输入电压或将其反相至一个负电压。还有另外一个好处,DC-DC转换器能够在优化条件下给出超过95%的转换效率。但是,该效率受限于耗能元件,一个主要因素就是电源内阻。
电源内阻引起的能耗会使效率降低10%或更多,这还不包括DC-DC转换器的损失!如果转换器具有足够的输入电压,输出将很正常,并且没有明显的迹象表明有功率被浪费掉。
幸好,测量输入效率是很简单的事情(参见电源部分)。
较大的电源内阻还会产生其它一些不太明显的效果。极端情况下,转换器输入会进入双稳态,或者,输出在最大负载下会跌落下来。双稳态意指转换器表现出两种稳定的输入状态,两种状态分别具有各自不同的效率。转换器输出仍然正常,但系统效率可能会有天壤之别(参见如何避免双稳态)。
只是简单地降低电源内阻就可以解决问题吗?不然,因为受实际条件所限,以及对成本/收益的折衷考虑,系统可能要求另外的方案。例如,合理选择输入电源电压能够明显降低对于电源内阻的要求。对于DC-DC转换器来讲,更高的输入电压限制了对输入电流的要求,同时也降低了对电源内阻的要求。从总体观点讲,5V至2.5V的转换,可能会比3.3V至2.5V的转换效率高得多。必须对各种选择进行评价。本文的目标就是提供一种分析的和直观的方法,来简化这种评价任务。
如图1所示,任何常规的功率分配系统都可划分为三个基本组成部分:电源、调节器(在此情况下为DC-DC转换器)和负载。电源可以是一组电池或一个稳压或未经稳压的直流电源。不幸的是,还有各种各样的耗能元件位于直流输出和负载之间,成为电源的组成部分:电压源输出阻抗、导线电阻以及接触电阻、PCB焊盘、串联滤波器、串联开关、热插拔电路等的电阻。这些因素会严重影响系统效率。
电源内阻引起的能耗会使效率降低10%或更多,这还不包括DC-DC转换器的损失!如果转换器具有足够的输入电压,输出将很正常,并且没有明显的迹象表明有功率被浪费掉。
幸好,测量输入效率是很简单的事情(参见电源部分)。
较大的电源内阻还会产生其它一些不太明显的效果。极端情况下,转换器输入会进入双稳态,或者,输出在最大负载下会跌落下来。双稳态意指转换器表现出两种稳定的输入状态,两种状态分别具有各自不同的效率。转换器输出仍然正常,但系统效率可能会有天壤之别(参见如何避免双稳态)。
只是简单地降低电源内阻就可以解决问题吗?不然,因为受实际条件所限,以及对成本/收益的折衷考虑,系统可能要求另外的方案。例如,合理选择输入电源电压能够明显降低对于电源内阻的要求。对于DC-DC转换器来讲,更高的输入电压限制了对输入电流的要求,同时也降低了对电源内阻的要求。从总体观点讲,5V至2.5V的转换,可能会比3.3V至2.5V的转换效率高得多。必须对各种选择进行评价。本文的目标就是提供一种分析的和直观的方法,来简化这种评价任务。
如图1所示,任何常规的功率分配系统都可划分为三个基本组成部分:电源、调节器(在此情况下为DC-DC转换器)和负载。电源可以是一组电池或一个稳压或未经稳压的直流电源。不幸的是,还有各种各样的耗能元件位于直流输出和负载之间,成为电源的组成部分:电压源输出阻抗、导线电阻以及接触电阻、PCB焊盘、串联滤波器、串联开关、热插拔电路等的电阻。这些因素会严重影响系统效率。
图1. 三个基本部分组成的标准功率分配系统 计算和测量电源效率非常简单。EFFSOURCE = (送入调节器的功率)/(VPS输出功率) x 100%: 调节器(DC-DC转换器)由控制IC和相关的分立元件组成。其特性在制造商提供的数据资料中有详细描述。DC-DC转换器的效率EFFDCDC = (转换器输出功率)/(转换器输入功率) x 100%: 当输入电压最接近输出电压时,DC-DC转换器具有最高的效率。如果输入的改变还没有达到数据资料所规定的极端情况,那么,转换器的效率常常可以近似为75%至95%之间的一个常数: 一个理想的DC-DC转换器具有100%的效率,工作于任意的输入和输出电压范围,并可向负载提供任意的电流。它也可以任意小,并可随意获得。在本分析中,我们只假设转换器的效率恒定不变,这样输入功率正比于输出功率: |
- DC-DC电源系统的优化设计(05-27)
- 基于Multisim的负电阻特性分析及应用(07-26)
- 新型灌封式6A至12A DC-DC μModule稳压器系列(11-19)
- DC-DC开关变换器中混沌现象的研究综述(11-27)
- 数码相机电源电路设计及DC/DC变换器选择(01-22)
- 产生双极性输出的无变压器 DC/DC 变换器(01-23)