微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 智能抽油机节能器的设计

智能抽油机节能器的设计

时间:10-01 来源:中电网 点击:
在我国油井抽油机的使用面广、数量大,但抽油机的平均负荷率低,抽油机长期运行于低功率因数的情况下,其无功损耗很大,因此必须采取补偿措施提高功率因素和降耗节能。通过测试,抽油机存在以下的工作状态:首先抽油机在一个行程其负荷是大幅度地变化的,而且这种变化是相当频繁的,同时又没有规律;其次,抽油机电机不仅工作于电动状态,还会工作于发电状态,出现功率倒送的问题;另外,一台变压器可能带有多口抽油机,这样抽油机就可能远离变压器,这时就出现了较大的线路损耗。针对上述问题,如果用通常的方法进行功率因数的校正,无法实现这种瞬时变化功率因数的校正,必须采取一定的算法,实现实时动态的无功补偿。

  1 瞬时动态补偿模型

  抽油机作为电网的一个负载,它的阻抗是瞬变的,与其转差率密切相关,但在进行动态补偿时很难准确地测出转差率。但在任一时刻电机的输入电压和电流是确定的,这样可以将电机的等值阻抗作为测量等效值,其模型如图1(a)所示。电机的运行状态可分类如下:

  (1)异步电机处于电动机运行状态,电压(Um)和电流(Im)均为正弦,且电流滞后于电压。

  (2)异步电机是处于发电动机状态,则由于发出电压的相位不能保证与电网电压相位一致,因此电机的电流会产生畸变,又由于线路电阻的存在,加在电机上的电压也表现出非正弦性。

  以上2种情况均可以等效为1个电感和1个电阻的串联,图1(a)中Xm和rm分别为感抗和电阻,只是Xm和rm均不是常量而是随电机运行状态变化而变化的量。同时考虑到线路中存在电阻(设电阻为r1),这样要想提高功率因数,就可以采用并联电容器的方法进行,图1(a)中Xc就是并联电容的容抗。通过计算电压电流的基波及谐波的幅值和相位得到的xm和rm,r1是一个定值,由电线的规格及长度决定。通过电容补偿的目的就是减少或消除无功损耗,补偿后的理想模型如图1(b)所示。此时设电动机的等效感抗为Xe=jωl,则对于n次谐波补偿电容C有:

  可见补偿电容值不仅与电机的等效电阻、电感有关,还与谐波之间有关系,谐波次数越高需要的补偿电容越小。但必须注意,在谐波较大时,不能一味追求功率因数,而应从综合效率上考虑。

  2 控制装置设计

  系统构成如图2所示,装置采用PIC16C74作为主控器,负责三相电压电流的数据采集与处理以及同步信号、相序信号、缺相信号的检测、E2PROM(93C46)读写操作、控制补偿电容器的投切以及远程通信。硬件主要分为以下的功能块:看门狗电路、信号调理电路、A/D转换电路、电容器投切控制电路、锁相环电路、远程通信接口电路等。

  PIC16C74单片机采用独立分离的数据总线和14 b指令总线的"哈佛"结构,采用33条精简指令集,指令执行速度快,效率高,内含4 kB程序存储器和192 B数据存储器,3个硬件定时器,便于定时和同步,具有8路8 b A/D转换,但因对应的端口需用于输入输出,所以系统中没有使用内置的A/D。

  2.1 滤波及信号调理电路

  滤波器选用MAX274,在该系统中MAX274用作4阶低通滤波器。滤波器输出信号的范围为-5~+5 V,而A/D转换器的模拟输入信号的范围是0~+5 V,因此需要进行信号的调理。

  2.2 A/D转换电路

  A/D转换器选用ADS7864,它具有6通道全差分输入的双12位的的A/D,良好共模抑制比,能以500 kHz的采样率同时进行6通道信号采样。系统中使用ADS7864的6路A/D进行三相电压和三相电流的测量,因其内部特有的并行接口与6个FIFO寄存器连接,所以便于快速、同步地采集数据。

  2.3 SPI接口

  93C46为一个存储容量为1 024 b的E2PROM,其接口为SPI。PIC16C74提供了SPI接口,因此硬件连接非常方便。系统中使用8位结构,所以其第6引脚接地,在这种结构下,93C46有7条10位的指令,但根据需要只使用其中的EWEN,READ,WRITE指令。

  2.4 补偿电容器

  系统中采用电容器组合来逼近所需补偿的电容值,电容器的级别为:0.5 kV,1 kV,2 kV,4 kV,7 kV,它们可以组合成0.5~14.5 kV间隔0.5 kV共29个等级。另外在实际应用考虑到电容与频率有关,这些参数还要进行修正。

  2.5 远程接口电路

  为了实现油井的网络化控制和调度,本装置设计GSM/GPRS远程通信模块。装置中通过串口将GSM/GPRS模块与单片机相连。每过一定的时间(可以设定)向控制中心发送数据。这些数据包括三相电压电流的信号、功率因素等。

  2.6 软件设计

软件采用模块化的结构设计方法,主要模块包括:视始化、电压电流采样、FFT变换、93C46的SPI接口以及势据的读写、电容器的投切控制以及远程数据通信。

  

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top