微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 利用双处理器延长电池使用寿命

利用双处理器延长电池使用寿命

时间:09-21 来源:21IC 点击:

管理DSP的电源

  众多现代DSP都拥有必须进行上电排序才能实现正常运行的多条电源轨。通常情况下,这些电源轨包括内核电源轨、DDR 电源轨以及 I/O 电源轨等。尽管可用固定功能的器件来执行电源排序,但却不能扩展支持其他功能。

图4 采用MCU实现的DSP电源排序

  如图 4 所示,采用小型低功耗微控制器,如TI的MSP430 MCU,取代固定功能器件就能实施排序、监控与监管等功能,从而实现主处理器(如TI的TMS320C550x DSP)的电源管理。
MSP430MCU上的软件例程可实现以正确的顺序启用C550x DSP稳压器电路。MSP430采用其内部ADC 来确认电源轨达到适当电压的时间。如果不需要C550x,则可采用稳压器的关断特性将主处理器关闭。
事实上,MCU可通过直接与VXO通信来控制电压,或通过与PLL直接通信来控制频率,从而同时实现对DSP电压与频率的控制。这样做明显的好处在于,DSP完成了计算密集型任务后,MCU 可让DSP进入有效的待机模式。

  监控进程是双向的,换言之,MCU可探询DSP的繁忙程度。在此模式下,其可发挥智能控制器的作用。另一方面,DSP的内部监控功能也能发挥作用。由于既可对MCU进行读取也能写入,因此DSP可根据应用需要通知MCU时钟的加速或减速。

  人机接口管理

  我们可通过与MCU的交互来降低DSP的功耗,避免在内部用DSP来执行简单的任务。不过这种做法的更大好处在于,系统设计人员能将单处理器系统中由DSP执行的一些监管任务交给MCU 来完成。
MCU能轻松满足键区操作的相关要求,而且功耗比DSP低得多。例如,仅为500nA的待机电流就比DSP小得多。只有在将按键按下再放开后,我们才向DSP实施中断,通过确保这一点,MCU 可避免按键卡住后造成的电流消耗,而这种按键卡住不动的情况在某些手持设备中并不少见。

  此外,16MHz MCU还能支持用户显示的管理工作。为了进一步提高节能效率,MCU应拥有集成的片段型LCD驱动器,以处理四个多路复用的数据流。

  此外,MCU还应具备相关集成功能,以能通过标准SPI、UART、I2C 或RF等与外设通信,而且还应在无须轮询的情况下即能自动从低功耗模式启动。

  电池充电与充电管理通常是采用固定功能器件可执行的另一个监管功能,不过该任务也可由微控制器来完成。我们可用微控制器的 ADC 来测量电压;用定时器和软件来管理充电;并用脉宽调制输出来提供充电波形。微控制器厂商的应用报告通常会介绍其产品如何完成上述功能,而且还会提供代码样例。例如,用户可从 TI 网站上下载编号为 SLAA287、题为"采用 MSP430 的锂离子电池充电器解决方案"的应用报告,其中介绍了 MSP430 产品的相关解决方案。

  一旦系统分组完成后,还必需将MCU与DSP连接在一起,确保其彼此间正常通信。MCU 与外设交互过程中所需的大部分数据都要与DSP共享。当然,这会对MCU的技术规范提出一定的要求。我们应当寻求至少具备 16 个 GPIO 端口的产品,以支持处理器间的通信。此外,还应要求所选产品支持片上SPI 与 I2C 接口,而电池充电功能需要10 位 ADC。

  在大多数系统中,我们可构建简单的协议,让DSP向微控制器发出基本命令。在某些情况下,如果主处理器与微控制器是相同厂商提供的,那么可以通过应用报告及相关解决方案将二者很好地结合起来。

  结论

  DSP在降低功耗方面取得了重大进步,但由于制造DSP的高性能工艺技术所限,要实现应有的作用还比较有限。在芯片处于待机或空闲模式时,它们特别容易受到晶体管漏电流造成的功耗影响。说到底,设计人员需要根据对DSP和/或MCU的计算、测量分析以及两者间的折中平衡来确定到底其应用方案应采用一个处理器,还是结合采用两个处理器。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top