微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 超低压差CMOS线性稳压器的设计

超低压差CMOS线性稳压器的设计

时间:08-17 来源:EDN 点击:

2.5 输出精度

  稳压器的输出精度是由多种因素的变化在输出端共同作用的体现,主要有输入电压变化引起的输出变化ΔVLR 、负载变化引起的输出变化ΔVLDR 、基准漂移引起的输出变化ΔVref 、误差放大器失调引起的输出变化ΔVamp 、采样电阻阻值漂移引起的输出变化ΔVres 、以及工作温度变化引起的输出变化ΔVTC ,输出精度ACC由下式给出:

  
  其中ΔVref 、ΔVamp 及ΔVres对ACC影响较大,故基准电压源、误差放大器及采样电阻网络的拓扑结构在设计时需重点考虑。

  3 电路设计及模拟结果

  3.1 带隙基准电压源的设计

  基准电压源是线性稳压器的核心模块,是影响稳压器精度的最主要因素。带隙基准电压源的工作原理是利用晶体管的VBE所具有的负温度系数与不同电流密度下两晶体管之间的ΔVBE所具有正温度系数的特性,乘以合适的系数使二者相互补偿,从而得到低温漂的输出电压。

  电路实现如图2所示,有:

  

  其中n 为Q1 、Q2 的发射区面积比。Hspice 模拟结果表明,当电源电压变化范围在2.5~6V 之间时,常温下VREF = 1.254V ,温度变化范围在-30~120 ℃之间时,温漂系数小于10×10-6/ ℃。

图2 带隙基准源电路

  3.2 误差放大器的设计

  误差放大器将输出反馈采样电压与基准电压进行差值信号比较放大,输出后控制调整管的导通状态,保持Vout稳定,其增益、带宽及输入失调电压等指标对稳压器的输出精度、负载和电压调整能力、瞬态响应等特性有较大影响,电路实现如图3所示。通过Hspice 模拟得到该误差放大器在VCC1为4.2V 时,其输入失调电压为0.05μV ,直流增益为110dB ,带宽达到10MHz。

图3 误差放大器电路

  3.3 过流限制模块的设计

  过流限制电路的设计思路是通过对调整管栅源电压进行采样,实现控制调整管的栅极电压,从而达到限制输出电流的目的,电路实现如图4所示。

图4 过流限制电路

  当负载电流由小增大时,VDrv随之降低,调整管MTG的ID随之增大,通过M20对调整管MTG的栅源电压进行采样,使得M31 的栅极电压增大,这样M21的栅极电压随之降低,从而实现对VDrv的调整。通过Hspice 模拟得到,当负载电流超过330mA 时,M21将开始导通,从而使VDrv 随之提高,使调整管MTG导通程度减弱,起到限流保护作用。

  3.4 过热保护模块的设计

  过热保护电路的设计思路是利用对温度敏感的元件来检测的片内温度的变化,当温度超过设定值时,保护电路动作,调整管被关断,以防其损坏,电路实现如图5所示。

图5 过热保护电路

  利用晶体管的VBE具有负温度系数的特性,将Q0作为测温元件,由M12 、M13 、M10 、M5 、和M4 形成一比较器,M11 、R1 和R2 组成分压电路。在低于温度设定值时设计VGM12< VGM13,比较器的输出VGM3为低电平, Tout 的输出为高电平,电路正常工作,当温度升高到超过设定值时,有VGM12> VGM13,比较器反转, VGM3 变为高电平, TOUT的输出为低电平,从而实现关断调整管。本电路的温度保护设定值为160 ℃,Hspice 的模拟结果如图6所示,图中×代表输出电压VOUT , ⊙代表VGM12,Δ 代表VGM13, 负载电流为300mA。

图6 输出电压随温度的变化( I0=300mA)

  3.5 总体电路模拟结果

  本电路采用韩国现代公司0.6μm 工艺模型,通过Hspice 对整体电路及各关键模块进行了模拟优化,典型工作条件下模拟结果如表1,输出电压随输入电压及温度的变化如图6、图7所示,模拟结果充分验证了设计的正确性。

图7 输出电压随输入电压的变化( IO = 300mA)

  4  总 结

  本文分析讨论了低压差线性稳压器的工作特性及设计考虑,并给出了关键模块的电路设计图,HSPICE 的模拟结果验证了电路具有良好特性,该电路采用标准CMOS工艺实现,具有较高的实用价值。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top