S波段固态功率放大器的仿真设计
功放屏蔽盒主要起电屏蔽的作用,应满足一定的电磁兼容条件,尽量减小功放电路的微波辐射信号对整个电路的影响。通常把微带电路(包括有源和无源器件)放入盒体中,工作在其截止频率以下,将会减小微波元件由于辐射信号造成的影响(如减小反馈、增益波动以及改善隔离度等)。本文设计的S波段功率放大器,其工作频率半波长约为5cm,为避免盒体内产生波导传输效应,盒体的横向宽度设计为5cm左右,并且根据实际电路结构把电源部分和射频部分用金属隔板隔开,射频部分腔体宽度约为2.5cm。根据实际器件尺寸在HFSS软件中对腔体尺寸进行仿真优化,设计好的功放盒体的结构模型。
5、功率放大器的仿真
本文利用Agilent ADS软件对180W功放进行仿真,仿真得到电路的大信号增益特性如图1、图2所示,输入36dBm功率信号,在2.0~2.3GHz频带范围内,输出功率增益可达14.7dB。在2.05~2.25GHz频带范围内,增益起伏小于0.2dB。输入输出的回波损耗小于-23dB。
电路的功率效率特性如图3所示,P1dB的频带范围为1.94~2.3GHz,输出功率大于50dBm,效率大于45%;电路的功率频率特性如图4所示,在工作带2.0~2.3GHz内,输入为36dBm时输出功率P1dB大于50.5dBm,功率频率曲线很平坦,达到了设计要求;PA的Two-Tone交调特性如图5所示,第一载波频率为2.13808GHz,第二载波频率为2.14192GHz,设计的PA Two-Tone在平均输出功率45dBm,IM3小于-35dBc,可以满足CDMA应用要求。PA的增益、效率与输出功率的特性如图6所示,所选的频率为2.14GHz,由图可知180W固态功率放大器的饱和输出功率达53dBm,功率附加效率达60%。
图1、大信号条件下增益特性
图2、输入输出端的回波损耗
图3、输入输出功率及效率的特性
图4、输入功率为36dBm时的功率频率特性
图5、三阶交调特性
图6、功率增益效率特性
6、结论
本文利用功率合成的技术设计出S波段输出功率180W的大功率放大器,并充分的考虑了散热和屏蔽盒的设计,结合软件Agilent ADS仿真设计出符合技术指标的功率放大器,论文采用的3dB正交功率合成来实现功率合成,有损耗小、一致性好等优点。并且用HFSS对屏蔽盒进行设计,使屏蔽盒的设计比较简单。
作者:张利飞 汪海勇
功率放大器 相关文章:
- 基于ADS的基站功率放大器仿真实现(10-13)
- 不对称Doherty功率放大器ADS仿真(04-09)
- 基站功率放大器ADS仿真设计(06-17)
- 基于ADS平台不对称Doherty功率放大器的仿真设计(08-19)
- 基于ADS平台改进型Doherty电路设计与仿真(01-15)