S波段固态功率放大器的仿真设计
1、引言
微波功率放大器作为发射机单元中至关重要的部件在许多微波电子设备和系统中广泛应用,如现代无线通信、卫星收发设备、雷达、遥测遥控系统、电子对抗等。传统的大功率放大器用真空管来实现,随着半导体器件的不断发展,固态器件的优势不断明显,微波固态功率放大器具有体积小、工作电压低、稳定性高、良好的可重复性等优点在许多领域倍受青睐。本文研究的是S波段的大功率固态放大器,输出功率是180W的连续波,工作频率为2.0GHz到2.3GHz,功率增益大于13dB,增益平坦度小于+/-1.0dB,1 dB增益压缩点处的输出功率为50dBm,饱和输出功率大于53.4dBm,功率附加效率大于48%。
2、匹配电路的设计
由于功率放大器工作于非线性,小信号放大器的网路设计方法不再适用。本文要研究的是180W大功率放大器,放大器的输入输出阻抗随着频率和输入功率的变化而变化,通常有三种分析方法来分析匹配电路:动态阻抗法、大信号S参数法和负载牵引法。
动态阻抗法它要求大信号工作状态下的动态输入、输出阻抗(也称最佳负载阻抗)。动态阻抗测试原理是,用调配器将功率管调配到最大功率输出状态,然后分别测出从信号源向功率管输入端看去、从负载向输出端看去的阻抗,其阻抗值即为动态输入、动态输出阻抗;大信号S参数可以进行功率放大器的功率增益、稳定性的分析和增益、平坦度的设计。同时,利用大信号S参数设计功率放大器时,除了应根据输出功率的大小选择负载阻抗外.还可以根据绝对稳定条件和潜在不稳定条件两种情况分别进行考虑。大信号S参数的测量比较困难,通常采用双信号法或大电流直流拟合法来测大信号S参数;负载牵引法它要求给出对应各种不同的输出功率、功率增益和效率等参数的不同数据,由计算机进行综合设计。其设计系统较为复杂。
通常对于大功率晶体管而言,厂家多给出功率晶体管道动态输入、输出阻抗,故匹配网络设计也采用动态阻抗法来进行设计,实验也采用动态阻抗法来设计匹配网络。接下来就以此为依据来设计匹配电路,本设计中单片功率放大管给出的是动态输入输出阻抗,其值为复数。阻抗匹配网络设计的核心思想是将频率范围内的输入输出阻抗匹配到50W阻抗附近,在阻抗园图上,即将输入输出阻抗匹配到阻抗圆图的中心附近。如果对于串联功放管设计功率放大器的话,级间匹配也是很重要的,一般是实现共轭匹配,并且在实际情况可以采用多种方法比较,选择比较合适的匹配电路来设计。
3、功率合成技术
微波射频功率放大器由于工艺,设计线性度、工作状态的限制,单管的输出功率很难满足设计要求,因此必须采用多管并联的方式来合成功率满足设计要求。功率合成器有两路合成器、多路合成器、链式合成器之分。一般功率合成采用两路合成器,常用于功率合成的两路功分器有:WILKSON功分器、3dB正交功率合成器、反相推挽功率合成器。影响合路器合成效率的主要因素包括合路器输入、输出阻抗匹配状况(输入输出电压驻波系数)、幅度、相位不平衡度、插入损耗,以及各路之间的相互隔离度等。功率合成器将各模块射频输出电压相互叠加,并把所有模块输出功率的总和减去合成器的损失传送到单个端口。可以用许多功率合成-分配结构,并且它们都显示出某些不同的特性,通常,功率合成器的要求如下:
(1)合成器应具有低的插入损失,使得发射机的功率输出和效率不受影响;(2)合成器在端口间应具有射频隔离,使得故障模块不会影响剩余工作模块的负载阻抗或功率合成效率;
(3)合成器应能给放大器模块提供一个可控的射频阻抗,使得放大器的性能不致降低;
(4)合成器的可靠性应远高于其他发射组件的可靠性;
(5)功率合成器终端负载承受功耗的能力应足以适应任一种放大器故障组合;
(6)合成器的机械封装应便于模块的维修。封装也应给放大器模块与合成器之间提供短、等相位和低插入损失的互连。
本设计采用的为3dB正交功率合成,平衡放大器由两个相同的放大器A和B通过两个3dB电桥并联连接,其中输入、输出电桥分别用作功率分配器和功率合成器。3dB电桥的直通端口与耦合端口间的耦合度为3dB,相位差为90度。因此,在平衡放大器的输入、输出端放大器A和B的反射信号相位相差180度而相互抵消,所以理想平衡放大器的输入、输出驻波比(VSWR)等于1。由此可知,平衡放大器的驻波系数(VSWR)仅由3dB 90度电桥的性能决定,与分立放大器性能无关。放大器A和B的正向传输信号在平衡放大器的输出端口相位相同,放大器A和B的输出信号在输出电桥的输出端口同相相加。
4、散热和屏蔽盒的考虑一般微波功率放大器的功率附加效率
功率放大器 相关文章:
- 基于ADS的基站功率放大器仿真实现(10-13)
- 不对称Doherty功率放大器ADS仿真(04-09)
- 基站功率放大器ADS仿真设计(06-17)
- 基于ADS平台不对称Doherty功率放大器的仿真设计(08-19)
- 基于ADS平台改进型Doherty电路设计与仿真(01-15)