图6:在距离主输出电容约1英寸的地方增加一个10uF、35V、125mΩ ESR的钽电容后,纹波下降到了约35mV峰峰值 然而,在靠近输出电容很近的地方增加较大容值的陶瓷电容就很可能会产生问题。图7说明了将一个2.2uF的陶瓷电容紧靠输出电容连接时发生的情况。
图7:将一个2.2uF的陶瓷电容紧靠输出电容连接时发生的情况 开关脉冲又开始成串地集中出现。问题是由与主输出电容的ESR并行放置的附加滤波电容引起的。如果这个附加电容和输出电容的ESR的转角频率接近稳压器的开关频率,有效ESR就开始减少,控制电路"看到"的纹波开始衰减。然而,如果附加电容与主输出电容的距离至少有几英寸时,就会有足够的引线电感有效地将主输出电容和附加电容隔离开来,电路也就能正常工作。从纹波波形可以看出,纹波与开关节点波形之间有明显的相位偏移。这就意味着负载在开关频率点呈现很大的容性,而这是不希望看到的结果。
对电路进行改进
也许最佳方案是由人工产生需要的纹波信息并反馈给控制器,让控制器以为是真正想要的东西。这样能把输出纹波做得任意小,同时仍能保证电路正常工作。见图8。
图8:R4、C7和C8网络组成三角波发生器,向FB引脚提供所需的信息 R4、C7和C8网络组成三角波发生器,向FB引脚提供所需的信息。电阻R4和电容C7对电感上的电压进行积分,产生的信号再通过C8交流耦合到反馈引脚。正常情况下,电感对其上面的电压进行积分,并产生三角电流波形,流经输出电容的ESR后产生用于反馈的三角电压波。这里的RC电路做的事也非常相似。电容C7对经过R4的电流(正比于加在R4电阻上的电压)进行积分。该电压与电感两端的电压是相同的。就反馈电路而言,两者实质上指的是同一件事。来自前面电路的ESR电阻已经被完全取消,电路中唯一的ESR只是22μF陶瓷电容的ESR,因此总的ESR大约在10mΩ数量级。
作为这种实现的结果,Vout端的纹波电压如图9所示。
图9:Vout端的纹波电压 纹波现在已经到了15mV峰峰值数量级。同时观察到测得的尖峰电平与以前相比也有所降低。这只是因为已经消除了开关节点测量。与带有噪声的信号源连接的另外一个示波器探头会幅射一定的能量,这一能量会被纹波测量探头采集。因此在做非常精确的纹波测量时最好使用单个探头。
在15V到50V输入范围内的线性调整度约为20mV。这个设计完全不受额外的大容量输出电容的影响。它要求零ESR,可以一直保持工作良好。如果环境有噪声或布线未经优化,只需简单地减小积分器的时间常数并产生稍多一点信号就行。
这种技术的设计过程相当简单。在理想开关频率点的积分电容阻抗应小于反馈分压电阻。由于在本例中有效分压电阻稍低于1,000Ω(1,000Ω与3,000Ω并联),C7在500kHz频率点的阻抗应选在100Ω左右,此时可以计算得到容值约为3300pF。由于Vin-Vout与产生的纹波电压相比非常大,因此可以把R4当作是一个理想的电流源。电流值等于(Vin-Vout)/R4。目标纹波电压可以较随意地选为50mV峰峰值。充电电容遵循I/C=dV/dt。当输入为30V时开启时间约为650ns。dV选为50mV,C为3,300pF。根据公式可以算出I约为250uA。根据R=(30V-10V)/250uA,R选为75kΩ。交流耦合电容值比积分电容大3到4倍,可以选为0.01uF。这些值都不需要非常严格。
需要注意的是,当负载足够轻以至于强迫电路进入不连续的传导模式工作(DCM)时,纹波会有所增加(如图10所示)。
| 图10:当负载足够轻以至于强迫电路进入不连续的传导模式工作(DCM)时,纹波会有所增加 | 在这种情况下,40mA输出时的纹波峰峰值接近1A输出时峰峰值的两倍,当负载为零时将增加到约25mV峰峰值。上面的轨迹是DCM下的开关节点。相对频率较高的振铃是电感与开关节点上寄生电容谐振的结果。这对任何处于DCM状态的稳压器来说都是正常并可以预料到的。开关节点电容由二极管电容、高侧开关输出电容和与任何与PCB布线有关的杂散电容等组成。这种振铃不需要进行任何处理,它不会引起任何问题。
本文小结
综上所述,基于固定开启时间的稳压器设计可以提供较低的输出纹波,同时仍保持原始设计的很多简洁性。对输出电容ESR没有要求的COT稳压器非常实用,生成的设计可以完全不用考虑与大电容负载有关的稳定性问题,因此无需过多考虑反馈环路的稳定性问题即能获得与复杂得多的时钟控制PWM系统相同的性能。
作者:
Craig Varga
美国国家半导体 | | | |