视频有源滤波器
滤波器达到了其目的,那么DAC输出看上去就像图4中的映像A,接下来,它右边的所有采样都应被滤掉。因此,对于重建的要求类似于抗混叠,但是,由于每个采样只停留瞬间,DAC会将每个采样保持一个时钟周期,这样一来,就产生了我们所熟悉的逼近于某斜线的台阶状波形。保持功能相当于一个数字滤波器,它的特性类似于 Butterworth或Bessel滤波器,在半采样频率处响应被降低了4dB。重建滤波器的第二个目的是补偿这个损失,这就需要如图5a电路那样的幅度均衡器。该均衡器在一个延时电路的基础上构成,具有类似于Bessel滤波器的响应。它可按照DAC采样率(FS)来设计。图5b显示了采用和未用幅度均衡器时的DAC频率响应。与延时级类似,它可以被包含在任何重建滤波器中。 NTSC/PAL视频重建最普通的要求是在13.5MHz处衰减>20dB,在27MHz处>40dB,截止频率取决于所采纳的视
保持响应也有一个对准采样时钟的极点,可以完全消除时钟。不过,大多数重建应用还是将时钟衰减作为其品质因数。现在了解了重建滤波器的功能,我们就可以着手设计了。 信号映像,分别对准采样时钟的各次谐波。重建滤波器将滤掉除
频标准。出于两方面的原因,我们选择了Sallen-Key结构的3极点Butterworth滤波器。首先,其增益(+2)适合驱动反向端接的电缆。其次,它的群延时差异可以调节,这样,不需要延时均衡器我们就可以通过调节群延时获得最优的性能。
有源视频滤波器设计中的实际问题
无论是手工设计的,还是软件辅助设计的,或是综合这两种方法得到的滤波器,实际的响应曲线可能并不完全符合预期。原因之一是计算出的响应与采用标准元件值得到的实际响应之间存有偏差。通过选择标准(5%)容值的电容器而导出电阻值可以使误差降至最小。原因很现实--可以购得1%或2%容差的电容器,但容值精度仅为5%,而对电阻来说,1%容差和1%精度的电阻很容易得到。这样选择的元件可以提供最佳的一致性和最精确的幅度响应。
滤波器构成之后,可能出现不稳定与振荡的情况。如果出现这样的情况,将输入对地短接,看其是否继续振荡。如果振荡停止,说明阻抗太高,降低设计阻抗就可以消除振荡。但如果仍继续振荡,则请注意振荡频率是否接近滤波器的截止频率或在截止频率以下。如果是这样,振荡可能是由元件或寄生参数引起的。若振荡频率高于截止频率,那么可能是运放或电路板布局引起的。
好的布局就象是一件艺术作品,但它只是基于一些简单的原则。提供一个干净的电源电压和一个坚实的接地很重要,这意味着用低ESR的电容器滤波,有时是一个调节器。旁路电容连接而成的回路必须尽量小,否则寄生电感将与电容谐振。良好的接地平面对好的模拟设计很关键,但是随着带宽的增加,它可能带来寄生电容,使滤波器失调。为避免这样的问题,将受到影响的元件与走线下方的地平面去掉即可。
滤波器 相关文章:
- 无需调谐的“砖墙式”低通音频滤波器(11-20)
- 通用和低噪声的有源滤波器提供达10MHz的可重复性能(01-05)
- 直流耦合视频放大器/滤波器的视频信号电平转换(07-03)
- 开关电容梳状滤波器幅频特性的深入分析(06-05)
- 在高温超导滤波器后级的低温低噪声放大器的设计和调试方法(06-01)
- FFT、PFT和多相位DFT滤波器组瞬态响应的比较(09-25)