适用于交通运输系统的创新性电源解决方案
本文作者
凌力尔特公司
产品市场总监
Tony Armstrong
交通运输系统需求
交通运输系统的输入电压可能高达 14V (单电池供电汽车)、28V (双电池供电卡车、客车和飞机)、或更高电压,而其数字系统需要一个或更多个低压轨。因此,设计这类系统时,需要了解怎样才能简便、高效和可靠地从很高的输入电压降压。以下图 1 显示,汽车环境中的输入电压可能视其运行状态的改变而改变,而其运行状态可能包括负载突降变化到冷车发动的各种情况,甚至出现电池反向连接。
图 1:典型的汽车瞬态情况
当应用要求以非常高的效率进行电源转换,以最大限度减少转换过程中由功率损耗导致的热量时,采用开关稳压器解决方案是有帮助的。开关稳压器本质上是单片器件,片内集成了 MOSFET,采用了同步或非同步配置。或者,开关稳压器也可以由一个开关控制器组成,该控制器驱动采用单级或多级拓扑 (多相) 的外部 MOSFET,以提供数十安培至数百安培级的功率。为了满足如此大的功率范围要求,凌力尔特公司提供了广泛的开关稳压器解决方案,以使用户能够按照最终系统所需的特定设计标准,选择最适用的器件。相应地,我们的开关稳压器有非常宽的输入电压范围 (从 5V 直至 150V),输出功率级从数百毫安直至高于 1,000A。
这种开关稳压器的一个例子是 LTC3895,该器件是一个具有 150V 输入的同步降压型转换器,可配置为多相运行,如图 2 所示。
图 2:LTC3895 原理图以及效率随功率损耗变化的曲线
在任何交通运输系统中都有一个常见问题:怎样才能在不影响性能和转换效率的前提下,获得高降压比和占板面积紧凑的解决方案? 直到不久前,依然没有一款解决方案能够在不牺牲其他性能的情况下达到所有关键性能标准。不过,随着凌力尔特公司单片、2MHz 以上、同步降压型转换器 LT86xx 系列的推出,所有必要的性能标准都可以立即得到满足了。
一个很好的例子是 LT8609,这是一款 2A、42V 输入同步降压型开关稳压器。独特的同步整流拓扑提供 93% 的效率,而以 2MHz 频率切换使设计师能够避开关键噪声敏感频段,例如 AM 无线电,同时可提供占板面积非常紧凑的解决方案。突发模式 (Burst Mode®) 运行在无负载备用情况下保持静态电流低于 2.5μA,从而使该器件非常适合始终保持接通的系统。LT8609 的 3.0V 至 42V 输入电压范围使其非常适合汽车应用,这类应用必须以低至 3.0V 的最低输入电压稳定通过冷车发动和停-启情况,并稳定通过超过 40V 的负载瞬态。其内部 3.5A 开关可在峰值负载电流为 3A 时,提供高达 2A 的连续输出电流。原理图和相应于 2MHz 切换频率的效率曲线如图 3 所示。
图 3:LT8609 原理图和效率曲线
由于在单电池或双电池供电车辆中,冷车发动和负载突降情况很常见,所以很多交通运输系统都提供很宽的输入电压范围。而且使情况更加复杂的是,所需输出电压有可能超出这种已经很宽的输入电压范围。因此,系统设计师面临的复杂问题是,无论输入电压是高于、低于还是等于输出电压,所设计的解决方案都必须允许固定输出。
解决这种问题的常见方法是采用 SEPIC 拓扑转换器。不过这种转换器的设计很复杂,需要两个电感器,而且通常空间利用率和转换效率都不高。因此,凌力尔特公司设计了广泛的 4 开关降压-升压型控制器,这些控制器不仅简化了设计,还提供很高的空间利用率和转换效率,功率损耗在 5% 至 7% 之间 (视输入至输出电压范围而定)。图 4 所示 LT8705 是一个 4V 至 80V 输入的降压-升压型控制器例子,该器件提供车辆环境中常见的一个固定 12V 输出。
图 4:详细的 LT8705 原理图,从 4V 至 80V 输入提供固定 12V 输出
解决汽车冷车发动问题的另一种方法是,采用升压型转换器,后面再跟一个降压型转换器。在这种拓扑中,从单电池提供的升压型转换器之输出设定为比电池的标称电压高出几伏,然后再用一个降压型转换器对其降压,使其达到下游电子组件所需的工作电压。尽管这种方法需要两个转换器,但是凌力尔特公司已经开发出一款整合了升压型控制器和降压型控制器的器件,两个控制器既可独立使用,又可作为升压-降压跟随器使用。图 5 中用LTC7813 说明这种器件的工作原理。
图 5:LTC7813 原理图 ~~ 一个级联的升压及降压型单输出控制器 IC
低噪声电源管理
电磁辐射 (EMR)、电磁干扰 (EMI) 和电磁兼容 (EMC) 这些术语与带电粒子及有关磁场的能量有关,这种能量有可能影响电路性能和干
交通运输系统 电源转换 开关稳压器 LT8705 相关文章:
- 严酷的汽车环境要求高性能电源转换(08-17)
- 汽车环境需要可靠的电源转换(10-08)
- 苛刻的环境需要高性能的电源转换(12-06)
- 数字回路控制电源转换的设计(01-31)
- 隔离型μModule电源转换器 改善了信号测量准确度 可在严苛的电气与热环境中工作(03-05)
- 如何廉价地制作了110伏至12伏的电源转换器(06-28)