微波EDA网,见证研发工程师的成长! 2025濠电姷鏁告慨鎾儉婢舵劕绾ч幖瀛樻尭娴滅偓淇婇妶鍕妽闁告瑥绻橀弻锝夊箣閿濆棭妫勭紒鐐劤濞硷繝寮婚悢鍛婄秶闁告挆鍛缂傚倷鑳舵刊顓㈠垂閸洖钃熼柕濞炬櫆閸嬪棝鏌涚仦鍓р槈妞ゅ骏鎷�04闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋為悧鐘汇€侀弴銏℃櫆闁芥ê顦純鏇㈡⒒娴h櫣甯涢柛鏃€娲熼獮鏍敃閵堝洣绗夊銈嗙墱閸嬬偤鎮¢妷鈺傜厽闁哄洨鍋涢埀顒€婀遍埀顒佺啲閹凤拷09闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋為悧鐘汇€侀弴銏℃櫇闁逞屽墰缁絽螖娴h櫣顔曢梺鐟扮摠閻熴儵鎮橀埡鍐<闁绘瑢鍋撻柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋為悧鐘汇€侀弴銏犖ч柛灞剧煯婢规洖鈹戦缁撶細闁告鍐f瀺鐎广儱娲犻崑鎾舵喆閸曨剛锛涢梺鍛婎殕婵炲﹪鎮伴鈧畷鍫曨敆婢跺娅屽┑鐘垫暩婵挳骞婃径鎰;闁规崘顕ч柨銈嗕繆閵堝嫯鍏岄柛娆忔濮婅櫣绱掑Ο鑽ゎ槬闂佺ǹ锕ゅ﹢閬嶅焵椤掍胶鍟查柟鍑ゆ嫹婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄Ь椤濡甸崟顖氱疀闁告挷鑳堕弳鐘电磽娴e搫顎岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷
首页 > 硬件设计 > 硬件工程师文库 > LDMOS宽带功率放大器匹配电路设计

LDMOS宽带功率放大器匹配电路设计

时间:03-11 来源:3721RD 点击:

  摘要: 针对LDMOS宽带功率放大器匹配电路设计, 提出了一种快速、有效的方法。采用多节并联导纳匹配法得出宽带匹配电路的初始值后, 利用ADS软件对匹配网络的S参数进行优化。仿真结果为: 在频率范围为1. 3 GH z~ 2. 3 GH z内, 两端口的反射系数均小于- 25 dB, 匹配网路的传输系数接近0 dB。为实现更好的阻抗匹配, 再用ADS优化匹配网络, 使其阻抗值更接近功率晶体管的实际输出阻抗值。此方法对快速有效地设计宽带功率放大器匹配电路有着很好的借鉴作用。

  宽带功率放大器除在军用领域外, 在无线通信、移动电话、卫星通信网、全球定位系统、直播卫星接收、毫米波自动防撞系统、光传输系统等领域都有着广阔的应用前景。

  LDMOS功率晶体管较其它微波晶体管有着很好的热稳定性, 频率稳定性, 更好的线性度, 较大的线性增益, 更高的效率和较低的交叉调制失真。同时, LDMOS 是基于成熟的硅工艺器件, 成本较其它GaAs等器件低很多。因此, LDMOS 特别适用于新一代移动通信系统基站中的功率放大器。

  阻抗匹配是微波功率晶体管放大器的设计关键, 合适的阻抗匹配网络可以实现通频带内最佳的功率传递效率。即将晶体管放大器的输入阻抗与信号源的内阻实现共轭匹配; 晶体管放大器的输出阻抗与负载阻抗达到共轭匹配。前级晶体管的输出阻抗与后级晶体管的输入阻抗实现共轭匹配。

  在阻抗匹配的并联导纳法中, 其所达到的阻抗匹配仅限于在工作频率附近能达到的较好匹配。若工作频率改变, 微波晶体管输入、输出阻抗(或导纳)都会产生相应变化。因此要保持在较宽的工作频带内具有良好的共轭匹配, 就要采用多节并联导纳匹配法。其过程是将晶体管在不同工作频率上测得的导纳值描在导纳圆图上, 按频率顺序由低至高, 将导纳值连成一条曲线。设计时, 据此曲线选用多个并联导纳, 从不同位置接入, 以实现在较宽频带内的共轭匹配。

  假设并联电纳多接入点离晶体管的距离为l, 那么在不同工作频率时, 晶体管导纳值沿各自等驻波系数圆转到并联电纳接入点所旋转的波长数l / λ g是不同的l / 长< l / λ短。即在整个工作频带内, 高于中心频率的各点导纳值比低于中心频率的各点导纳值沿各自的等驻波系数圆移动距离所走过的波长数大。这样, 从微带线上的一点转换到另一点, 其导纳值随波长的变化轨迹与原来的不同。这表明, 在整个工作频带内晶体管导纳值变化的轨迹曲线, 在接入一段微带线之后, 在频段高端和低端得到不同的伸缩, 由此可使导纳曲线变换到靠近圆图的中心, 接近于匹配点, 从而达到宽带匹配的目的。

  1 设计思路

  因输入输出匹配电路设计方法相似, 故在此仅以LDMOS晶体管放大器MRF281Z输出匹配电路设计为例, 采用多节并联导纳匹配法得出宽带阻抗匹配网络的初始值, 再结合基于矩量法的ADS 软件对目标进行优化, 从而快速有效地实现晶体管放大器的宽带阻抗匹配。

  2 负载牵引法获得输出阻抗

  负载牵引法的原理就是放大器在大信号电平激励下, 通过连续变换负载测试输出功率, 然后在Sm ith阻抗圆图上画出等功率和等增益曲线。这样就可以选择适当的输出阻抗, 准确设计功率放大器,达到所需的增益和输出功率。

  晶体管MRF281Z在1. 4 GH z到2. 2 GHz的各频点的输出阻抗经用ADS 负载牵引后的得到的最佳负载阻抗为表1。

表1 晶体管MRF281Z的输出阻抗

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...

  3 多节阻抗匹配网络设计

  为了向负载传送最大功率或者使微波电路系统、传输系统处于或接近行波状态, 需要用共轭匹配网络。匹配网络对于放大器的驻波比、功率增益、输出功率等性能指标都有着决定性的制约。

  在\闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...共轭匹配的条件下, 得到最大传输功率, 在这里我们取频率f = 1. 8 GHz的输出阻抗Z out= 7. 807+ j 6. 626的共轭阻抗Z*out = 7. 807- j 6. 626作为我们匹配端口的阻抗, 在Sm ith 圆图中采用共轭匹配法进行四节微带线匹配(如图1、图2所示)。

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...

图1 多节微带线实现阻抗匹配的Smith圆图

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...

图2 多节微带线实现阻抗匹配原理图

  4 用ADS仿真与优化设计

  将上面得到的匹配电路用ADS进行仿真, 把各节微带线的长度和宽度设为变量, 并对其进行优化(如图3所示) , 步骤如下:

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...

图3 用ADS对输出匹配电路进行仿真及优化

  ( 1)在原理图中加入OPTIM 控件:

  先用Random 进行初步优化, 再利用Gradient进行局部优化。

  ( 2)加入优化目标GOAL控件:

  在此, 我们先对匹配网络的S参数进行优化, 具体的S参数优化目标控件配置表如表2所示。

表2 优化S参数目标控件配置表

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...

在完成优化匹配网络的S 参数之后

閻忓繐瀚伴。鑸电▔閹捐尙鐟归柛鈺冾攰椤斿嫰寮▎鎴旀煠闁规亽鍔忓畷锟�

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top