改进低值分流电阻的焊盘布局,优化高电流检测精度
简介
电流检测电阻有多种形状和尺寸可供选择,用于测量诸多汽车、功率控制和工业系统中的电流。使用极低值电阻(几mΩ或以下)时,焊料的电阻将在检测元件电阻中占据很大比例,结果大幅增加测量误差。高精度应用通常使用4引脚电阻和开尔文检测技术以减少这种误差,但是这些专用电阻却可能十分昂贵。另外,在测量大电流时,电阻焊盘的尺寸和设计在确定检测精度方面起着关键作用。本文将描述一种替代方案,该方案采用一种标准的低成本双焊盘检测电阻(4焊盘布局)以实现高精度开尔文检测。图1所示为用于确定五种不同布局所致误差的测试板。
图1. 检测电阻布局测试PCB板。
电流检测电阻
采用2512封装的常用电流检测电阻的电阻值最低可达0.5 mΩ,其最大功耗可能达3 W.为了展现最差条件下的误差,这些试验采用一个0.5 mΩ、3 W电阻,其容差为1%(型号:ULRG3-2512-0M50-FLFSLT制造商:Welwyn/TTelectronics)其尺寸和标准4线封装如图2所示。
图2. (a) ULRG3-2512-0M50-FLFSLT电阻的外形尺寸;(b) 标准4焊盘封装。
传统封装
对于开尔文检测,必须将标准双线封装焊盘进行拆分,以便为系统电流和检测电流提供独立的路径。图3显示了此类布局的一个例子。系统电流用红色箭头表示的路径。如果使用一种简单的双焊盘布局,则总电阻为:
为了避免增加电阻,需要把电压检测走线正确的布局到检测电阻焊盘处。系统电流将在上部焊点导致显著的压降,但检测电流则会在下部焊点导致可以忽略不计的压降。可见,这种焊盘分离方案可以消除测量中的焊点电阻,从而提高系统的总体精度。
图3. 开尔文检测。
优化开尔文封装
图3所示布局是对标准双焊盘方案的一种显著的改进,但是,在使用极低值电阻(0.5 mΩ或以下)时,焊盘上检测点的物理位置以及流经电阻的电流对称性的影响将变得更加显著。例如,ULRG3-2512-0M50-FLFSL是一款固态金属合金电阻,因此,电阻沿着焊盘每延伸一毫米,结果都会影响有效电阻。使用校准电流,通过比较五种定制封装下的压降,可以确定最佳检测布局。
简介
电流检测电阻有多种形状和尺寸可供选择,用于测量诸多汽车、功率控制和工业系统中的电流。使用极低值电阻(几mΩ或以下)时,焊料的电阻将在检测元件电阻中占据很大比例,结果大幅增加测量误差。高精度应用通常使用4引脚电阻和开尔文检测技术以减少这种误差,但是这些专用电阻却可能十分昂贵。另外,在测量大电流时,电阻焊盘的尺寸和设计在确定检测精度方面起着关键作用。本文将描述一种替代方案,该方案采用一种标准的低成本双焊盘检测电阻(4焊盘布局)以实现高精度开尔文检测。图1所示为用于确定五种不同布局所致误差的测试板。
图1. 检测电阻布局测试PCB板。
电流检测电阻
采用2512封装的常用电流检测电阻的电阻值最低可达0.5 mΩ,其最大功耗可能达3 W.为了展现最差条件下的误差,这些试验采用一个0.5 mΩ、3 W电阻,其容差为1%(型号:ULRG3-2512-0M50-FLFSLT制造商:Welwyn/TTelectronics)其尺寸和标准4线封装如图2所示。
图2. (a) ULRG3-2512-0M50-FLFSLT电阻的外形尺寸;(b) 标准4焊盘封装。
传统封装
对于开尔文检测,必须将标准双线封装焊盘进行拆分,以便为系统电流和检测电流提供独立的路径。图3显示了此类布局的一个例子。系统电流用红色箭头表示的路径。如果使用一种简单的双焊盘布局,则总电阻为:
为了避免增加电阻,需要把电压检测走线正确的布局到检测电阻焊盘处。系统电流将在上部焊点导致显著的压降,但检测电流则会在下部焊点导致可以忽略不计的压降。可见,这种焊盘分离方案可以消除测量中的焊点电阻,从而提高系统的总体精度。
图3. 开尔文检测。
优化开尔文封装
图3所示布局是对标准双焊盘方案的一种显著的改进,但是,在使用极低值电阻(0.5 mΩ或以下)时,焊盘上检测点的物理位置以及流经电阻的电流对称性的影响将变得更加显著。例如,ULRG3-2512-0M50-FLFSL是一款固态金属合金电阻,因此,电阻沿着焊盘每延伸一毫米,结果都会影响有效电阻。使用校准电流,通过比较五种定制封装下的压降,可以确定最佳检测布局。
测试PCB板
图4展示在测试PCB板上构建的五种布局模式,分别标记为A到E.我们尽可能把走线布局到沿着检测焊盘延伸的不同位置的测试点,表示为图中的彩点。各个电阻封装为:
1.基于2512建议封装的标准4线电阻(见图2(b))。检测点对 (X and Y)位于焊盘外
- 电阻式触摸屏的基本结构及驱动原理(09-30)
- 高层建筑物的防雷技术分析(10-19)
- 获取较高的低压输出精度小技巧(10-11)
- 降低接地装置接地电阻的措施(12-31)
- 一种200V/100A VDMOS 器件开发(02-23)
- 匹配的电阻器最大限度地提高放大器的性能(04-10)