双变流器补偿式UPS控制研究
这样,系统在加入重复控制器下动态响应会比原来直接用双环PI控制慢一点,但是对整个UPS输出电压的波形质量有了大大的改善。因此我们在采取加入重复控制后,对系统进行仿真。结果证明重复控制对UPS输出电压波形确实有大大的改善,特别是对非线性负载,效果更明显。
4 系统特性仿真结果
基于上述控制方案,在MATLAB SIMULINK环境下建立了系统的数字化仿真模型,并对其工作特性进行了仿真。图1中交流电源电压Vs的基波Vs1在其额定值VR(线电压380 V/相电压220 V)的±15%范围变化。Vs中的5次谐波电压V5,7次谐波电压V7各为基波电压值的5%。负载为三相相控桥整流装置,R=9.86Ω,L=50mH,相控角α=30º,直流负载功率20kW。直流端蓄电池Eb=440V,直流电容C=3300μF。串联变压器变比Ns=2,并联变压器变比Np=3½。滤波电感L1=7mH,L2=0.3mH,滤波电容C2=70μF。系统采样频率为10 kHz,三角载波频率(开关频率)为10 kHz。
仿真结果证实:所提出的控制方案可以较好地实现双变流器串并联补偿式UPS的功能。非线性负载对负载电流iL的波形畸变及输出电压波形畸变的影响是明显的。非线性负载越重,则影响也越突出,带滤波电容的不控整流负载情况最为严重。
5 结束语
通过比较并联变流器在不同控制策略下输出电压的控制效果,显然非线性负载下,单电压环控制对于输出电压波形的控制能力是有限的;若电压环结合重复控制,利用重复控制对周期性干扰的周期性调节能力,可以有效的改善输出电压波形,其控制效果基本上和电压电流双环控制相当;而当系统采用电压电流双环再加上重复控制时,则输出电压的控制效果最好。
- 基于单片机控制的UPS抗干扰技术(10-12)
- 通信机房安全隐患整改UPS应用方案(10-21)
- 细分MTTR对模块化UPS系统可用性的影响(12-02)
- 传统UPS与模块化UPS优劣分析(12-02)
- 应急电源用的EPS和UPS电源(12-03)
- UPS蓄电池的选择与维护(05-23)