IGBT安全工作区的物理概念和超安全工作区工作的失效机理
该能量产生在P阱PN结耗尽层X m中,耗尽层中的电场ε=1200V/Xm。这时,Xm (1200V)约为200μm,所以ε=6×104V/cm。定义εm≥3×104V/cm为强电场,现在,ε>εm电子在强电场下的漂移速度达到饱和。饱和的原因是强电场下光学波声子散射,通过光学波声子散射将外电场的能量传递给遭散射的晶格。量子物理提出一个基本事实:"尽管在固体里面电子是在密集的原子之间高速运动,只要这些原子按严格的周期性排列,电子的高速运动并不遭受散射"。Si单晶片和外延片中的缺陷就是晶格周期排列的破坏。缺陷密度大的部位散射截面就大,这时,从外电场接受的能量就多,该部位晶格振动就剧烈,使晶格温度t1升高。当t1大于硅的熔点(1415℃)时,出现Si熔洞而烧毁。这就是为什么烧毁的器件解剖后均发现Si熔洞的原因。这里我们从超出SCSOA的应用为例对烧毁机理做了上述分析。对于超出SCSOA的应用为例对烧毁机理做了上述分析。对于超出FBSOA、SSOA和RBSOA一样,只要偏置电压和偏置电压对应的耗尽层宽度Xm之比大于3×104V/cm,均可能产生上述烧毁。
解剖发现Si熔洞的面积A si约100μm2~1mm2。晶格温度为:
T1=Ic·Vce·Tsc/Dsi ·Csii·Asi·X m (1)
式中Dsi和Csi分别为Si比重和热比。Csi=0.7焦耳/克℃,Dsi=2.328克/cm3。我们假设在10μs的短路时间内产生能量的10%让强散射区吸收,并取Asi=1mm2,将相关数据代入(1)式得:t1=3600℃。该温度已大大超过Si的熔点1415℃,难怪烧毁后的Si片出现熔洞。
4、 短路持续时间Tsc和栅压Vg、集电极—发射极导通电压Vce(on)越大Tsc的关系

图5表示Tsc ~Vce (on)的关系曲线,可见集电极—发射极导通电压Vce(on)越大Tsc越长。图6表示Vg和Isc、Tssc的关系,由图6可见随着Vg的增加Tsc下降而Isc上升。

从目前IGBT生产中所用Si材料来讲,有外延材料和高阻单晶材料两种。用外延材料生产的IGBT在高压击穿时耗尽层穿通高阻移区而称为PT—IGBT。用高阻单晶片生产的IGBT,由于高阻漂移区较厚,高压击穿时不被穿通而称为NPT—IGBT。从沟道来分有平面栅和沟槽两类。PT-IGBT又分为PT、SPT(软穿通)和FS(场中止)IGBT。PT、SPT和FS-IGBT都有缓冲层,FS实际也是缓冲层,其结内电场为梯形分布。PT、SPT和FSIGBT可以做成平面栅,也可以做成沟槽栅。沟槽栅具有更低的导通压降Vce(on)。外延PT—IGBT的最高击穿电压为1200V。1700V以上的IGBT多用于高阻单晶材料,其结构为NPT结构。NPT—IGBT可做成平面栅,也可做成沟槽栅。加缓冲层的NPT结构又称FS—IGBT。
从短路能力来讲,外延片产生的PT、SPT或FS—IGBT,手册中均没给出SCSOA。不能满足Isc/Ic=103Vg≥15V,在额定电压下Tsc达不到10μs。此结构的IGBT的Vce(on)为负温度系数,不适于并联使用,适于开关电源电路。不适于有短路要求的马达驱动电路和电压型逆变电路。用高阻单晶Si生产的NPN—IGBT和沟槽栅场终止IGBT都给出了短路额定值SCSOA。在Tsc≤10μs,NPT—IGBT在额定电压下Isc/Ic=10,沟槽栅场终止IGBT Tsc≤10μs时,Isc/Ic=4。Tsc除了和结构有关外,尚和IGBT自身的垮导gm以及使用的Vg有关。在Vg一定的情况下,Gm越大Isc越高而Tsc越短。在不影响导通损耗的情况下,适当降低Vg使其不要进入深饱和区,可降低Isc和增加Tsc。Tsc越长过流保护电路的设计越容易满足。
5、 几个问题的讨论
5.1 如何评价IGBT的短路能力
短路安全工作区实际是脉冲宽度为Tsc的单脉冲工作状态。单脉冲下的耗散功率为
Psc= t j –t c/Z th (T sc) (2)
式中t j和t c分别为结温和壳温,Z th (T sc)为脉宽下Tsc的单脉冲瞬态热阻。短路时:
Psc = Vce·Isc 代入(2)式得
Isc = t j –t c/Z th (T sc)·Vce (3)
或 Z th (T sc) = t j –t c/Vce ·Isc (4)

图7是100A/1200V NPT—IGBT的瞬态热阻曲线。
当已知Tsc时,可求出脉宽为Tsc时的Z thjc。这时,t j应为150℃,t c=80℃,代入(3)
- 家电智能功率模块单驱动电源方案(10-07)
- IGBT 驱动器提供可靠保护(04-14)
- 各种IGBT 式感应加热电源性能比较(07-20)
- IGBT电力电子装置的应用详解(11-04)
- IGBT及其子器件的四种失效模式比较(06-13)
- 功率器件IGBT在不间断电源(UPS)中的应用 (06-26)
