PCB布线技术中的抗干扰设计
一般导线及焊盘布线
1.印刷板导线的最小宽度主要由导线与绝缘基板的粘附强度和流过它们的电流值决定。当铜箔厚度为0.5mm、宽度为1mm~15mm时,通过2A的电流,温升不会高于3℃。因此,导线宽度为1.5mm可满足要求。对于集成电路,尤其是数字电路,通常选0.02mm~0.3mm导线宽度。当然,只要允许,还是尽可能用宽线,尤其是电源线和地线。导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。对于集成电路,尤其是数字电路,只要工艺允许,可使间距小于0.1mm~0.2mm。
2.印刷导线拐弯处一般取圆弧,而直角或夹角在高频电路中会影响电气性能。此外,尽量避免使用大面积铜箔,否则,长时间受热时,易发生铜箔膨胀和脱落现象。必须用大面积铜箔时,最好用栅格状,这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气体。
3.焊盘中心也要比器件引线直径稍大一些。焊盘太大易形成虚焊。焊盘外径D一般不小于(d+1.2)mm,其中d为引线孔径。对高密度的数字电路,焊盘最小直径可取(d+1.0)mm。
电源线及地线设计
1.根据印刷线路板电流的大小,尽量加粗电源线宽度,减少环路电阻,同时,使电源线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。
2.在小信号电路与大电流电路做在一起的电路中,必须将GND明显地区分开来。布线方法为将小信号GND与大电流的GND进行分离,通常使用两根引线的GND。使大电流不在布线电阻上流动,从而不产生干扰,如像功率放大级和负载那样,将大电流流动的部分由电源直接进行布线。还有,将小信号部分进行汇总,也直接由电源进行布线。如果这样做,小信号线与大电流线完全分离,再将汇总的小信号GND与功率放大级的GND相连接。
当电路简单时,可将电源所供给的电路汇总成一个。但是当电路变得复杂时,就要分成几个基板(模块),电源的数目仍不变,还为1个。就其布线方法来看,若各基板电源及地线拥有公共布线电阻,任何一个基板上的电流发生变动,都影响到其他的基板。与此相反,若将其各个基板电源GND的布线分别由电源引出。这样,各自都有布线电阻,即使因电流变化而产生电压降,它仅停留在该基板上,而不会对其他基板产生影响。
3.正确选择单点接地与多点接地。在低频电路中,信号的工作频率小于1MHz,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地的方式。当信号工作频率大于10MHz时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。当工作频率在 1MHz~10MHz时,如果采用一点接地,其地线
长度不应超过波长的1/20,否则应采用多点接地法。
4.数字地与模拟地分开。电路板上既有高速逻辑电路,又有线性电路,应使它们尽量分开,而两者的地线不要相混,分别与电源端地线相连。低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地;高频电路宜采用多点串联接地,地线应短而粗。高频元件周围尽量用栅格状大面积地箔,要尽量加大线性电路的接地面积。
5.接地线应尽量加粗。若接地线用很细的线条,则接地电位会随电流的变化而变化,致使电子产品的定时信号电平不稳,抗噪声性能降低。因此应将接地线尽量加粗,使它能通过三倍于印刷电路板的允许电流。如有可能,接地线的宽度应大于3mm。
6.接地线构成闭环路。设计只由数字电路组成的印刷电路板的地线系统时,将接地线做成闭路可以明显地提高抗噪声能力。其原因在于:印刷电路板上有很多集成电路元件,尤其遇有耗电多的元件时,因受接地线粗细的限制,会在地线上产生较大的电位差,引起抗噪声能力下降;若将接地线构成环路,则会缩小电位差值,提高电子设备的抗噪声能力。
结束语
电磁干扰已成为线路设计所面临的主要问题之一,PCB布线设计中的抗干扰是一项实践性非常强的技术工作。元件间的合理布局、增大布线间距、短线连接、减少布线过程中的过孔设置、降低连线的特性阻抗、避免多频率交调影响等是减少电磁干扰的有效方法。良好的PCB设计可以大大提高系统的抗干扰能力,从而提高系统可靠性。
- 混合集成电路的电磁兼容(EMC)设计 (10-07)
- 开关电源的EMC设计方案(12-21)
- 自激式开关稳压电源的工作原理及功能设计(01-13)
- 开关电源电磁干扰的抑制措施(07-02)
- 电源管理的开关频率与电磁干扰之间的平衡(02-26)
- 有效开关电源电磁干扰的抑制方法(01-12)