运算放大器的噪声
问:峰峰噪声电压是使我能知道噪声究竟是否有问题的最方便的方法。但是为什 么放大器制造厂家不愿用这种方法来规定噪声呢?
答:正如前面所指出的,因为噪声一般服从高斯分布。对于高斯分布来说,噪 声最大值的说法是没有意义的,即只要你等待足够长的时间,理论上可超过任何值。另外, 实际上常用噪声有效值这一概念。在某种程度上,它是一种不变量,即应用这种噪 声的高斯概率分布曲线我们可以预测大于任何给定值噪声的
表81 大于规定噪声峰峰值概率
峰峰值 大于规定 峰峰值的概率
概率。假设给定噪声源有效值为 V,由于噪声电压任何给定值的概率都服从高斯分布,所以可以得到:噪声电压大于2 V峰峰 值的概率为32%,大于3 V则为13%,依此类推,如表81所示。
如果我们使用噪声峰峰值出现的概率来定义峰峰值,那么使可采用峰峰值这项技术指标 ,但使用有效值更合适,因为它容易测量。当规定峰值噪声电压时,它常常为66倍有效 值(即66×rms),它出现的时间概率小于01%。
问:如何测量通常规定带宽(01~10 Hz)范围内低频噪声的有 效值?这一定要花费很长的时间。生产过程时间不是很宝贵的吗?
答:时间确实很宝贵。虽然在表征器件的特性期间进行许多精细的测量是很必要 的,但以后在生产过程测量其有效值就不必花费那么多的时间。我们采用的方法是,在1/f 区域很低的频率(低至01~10 Hz)范围内,在1至3倍30 s周期范围内测量其峰值,而且它 肯定 低于某个规定值。理论上这虽然不是令人满意的好方法,因为某些好器件可能被排除,而 且 还有些噪声会被漏检,但实际上在可能做到的测试时间范围内这是一种最好的方法。而且如 果它接近合适的阈值极限,那么这也是一种可接受的方法。从保守的眼光看来,这是测量噪 声的 可靠方法。不符合最高等级标准的那些器件仍然可以按照符合这项指标等级的器件来销售。
问:你还遇到过运算放大器其它噪声影响吗?
答:有一种常遇到的噪声影响,它通常表现为运算放大器噪声产生的失码现象。 这种严重影响可能是由于模数转换器(ADC)的输入阻抗调制引起的。下面看一下 这种影响是如何产生的。
许多逐次逼近式ADC都有一定的输入阻抗,它受转换器时钟的调制。如果用一种精密运算 放大器来驱动这种ADC,而且运算放大器的带宽比时钟频率低得多,那么这个运算放大器便 不能产生充足的反馈为ADC的输入端提供一个非常稳定的电压源,从而可能出现失码。一般 地,当使用OP07这类运算放大器来驱动AD574时就会出现这种问题。
解决这个问题的办法是,使用频带足够宽的运算放大器以便在ADC时钟频率影响下仍具有 低输出阻抗,或者选用内部 含有输入缓冲器的ADC,或者选用输入阻抗不受其内部时钟调制的ADC(许多采样ADC都没有这 个问题)。在运算放大器能够稳定地驱动容性负载,而且其系统带宽减小 是不重要的情况下,在ADC输入端加一个旁路去耦电容完全可以解决这个问题。
问:在高精密模拟电路中还有其它重要的噪声现象吗?
答:高精密电路随时间漂移趋势是一种类似噪声现象(实际上可以证明,这种时间 漂移至少与1/f噪声的低频端是相同的)。当我们规定长期稳定度时,通常以μV/1 000 h 或ppm/1 000 h为单位。又因为每年(Y)平均计算有8 766小时(h),所以用户又假 定x/1 000 h的不稳定度等于88x/Y。
事实并非如此。长期不稳定度(假定器件内部某个元件受损伤,其性能不是长期稳定退变 )好 像是一种"醉汉走路"(drunkard’s walk)行为,即器件在前1 000小时的 性能并不能代表后1 000小时的性能。这种长期不稳定度是按经历时间的平方根关系进行测 定的。这意味着,x/1 000 h的不稳定度,其年漂移实际上应乘以8766 ,或者其年漂移大约乘以3,或每10年漂移大约乘以9。这项指标应该用μV/1 000 h来表示。
实际上,许多器件的长期稳定度比上述情况好一点儿。如上所述,这种"醉汉走路 "方式假设器件的特性没有改变。实际上,当器件老化后,器件制造应力趋于减小,从而使 性能变得更加稳定(原始故障源除外)。既然很难定量地描述器件的这种长期稳定度,不妨说 假定器件工作在低应力环境下,在使用寿命范围内,其长期漂移速率趋于减小。这种漂移速 率的极限值 可能由1/f噪声决定,可用时间比率自然对数平方根公式来计算,例如时间比率为88 x/Y 对应的漂 移速率为ln88=147,即一年漂移为147x。同理88年漂移为294x,7 7年漂移为44x,依次类推n年漂移为xln(88n)/ln88。
- 运算放大器选择指南 助您获得上佳的噪声性能(09-10)
- 运算放大器组成阶梯波发生器电路图(10-11)
- 匹配的电阻器最大限度地提高放大器的性能(04-10)
- 放大器漏电流分析(02-07)
- LTC6268-10 示波器差分探头(12-02)
- 如何用运算放大器构成最精确的限幅器(09-23)