微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 运算放大器的噪声

运算放大器的噪声

时间:04-07 来源:21ic 点击:

大器 的电压 噪声起主要作用。

如果源电阻很高,那么源电阻产生的热噪声对运算放大器的电压噪声和由电流噪声引 起的电压噪声都起主要作用。但值得注意的是,由于热噪声只是随电阻的平方根增加,而由 电流噪声引起的噪声电压直接与输入阻抗成正比,所以放大器的电流噪声对于输入阻抗足够 高的情况下总是起主要作用。当放大器的电压噪声和电流噪声都足够高时,则不存在输入电 阻为何值时热噪声起主要作用的问题。 



图81 热噪声与源电阻的关系 

通过图8.1来说明这一点,上图给出了ADI公司的几种典型运算放大器在某一源电阻范围 内其电压噪声与电流噪声的比较。图中的对角线表示纵坐标热噪声与横坐标源电阻之间的关 系。让我们看一下图中的AD OP27:水平线表示约为3 nV/Hz的电压噪声 对应小于500 Ω的源电阻。可以看出源阻抗减小100 Ω并没有使噪声减小,但源阻抗增加2 kΩ却使噪声增加。AD OP27的垂直线表示,当源电阻大约在100 kΩ以上的情况下,放大 器的电流噪声产生的噪声电压将超过源电阻产生的热噪声,所以电流噪声为主要噪声源。 
应该记住,放大器同相输入端的任何电阻都具有热噪声,并且又把电流噪声转换成噪声 电压。另外反馈电阻的热噪声在高电阻电路中非常突出。当评价运算放大器性能时所有可能 的噪声源必须考虑。

问:请你介绍一下热噪声。
答:当温度在绝对零度以上,由于电荷载流子的热运动,所有电阻都具有噪声, 这种噪声称为热噪声,又称约翰逊噪声。有时利用这种特性测量冷冻温度。在温度为T(开氏 温度),带宽为B Hz,电阻为R Ω的电压噪声Vn和电流噪声In由下式计算:
Vn=4kTRB 和 In=4kTB/R
其中k为波尔兹曼常数(1.38×10 -23 J/K)。经验规则表明,1 kΩ电阻在室温下具有的 噪声为4 nV/Hz。
电路中所有电阻产生的噪声及其带来的影响是总要考虑的问题。实际上,只有输 入电路、反馈电路、高增益电路及前端电路的电阻才可能对总电路噪声有上述明显影响 。
一般可通过减小电阻或带宽的方法减小噪声,但降低温度的方法通常没有很大作用,除 非使电阻器的温度非常低,因为噪声功率与绝对温度成正比,绝对温度T= °C+273°。

问:什么是"噪声增益"?
答:到现在为止我们只讨论了噪声源,但还没有讨论出现噪声电路的增益。人们 可能会想到,如果在放大器的指定输入端的噪声电压为Vn并且该电路的信号增益为G,那 么输出端的噪声电压应为GVn。但实际并非总是这样。
现在请看图82所示的基本运算放大器增益电路。如果运算放大器接成反相放大器(接B 端), 同相输入端接地,将信号加到电阻Ri的自由端,那么这时增益为-Rf/Ri。反之,如果 运算放大器接成同相放大器(接A端),把信号加到同相输入端,并且电阻Ri的自由端接地 ,那么增益为(1+Rf/Ri)。


图82 信号增益与噪声增益 

放大器本身的电压噪声总是以同相放大器的方式被放大。所以当运算放大器接成信号增 益为 G的反相放大器时,其本身的电压噪声仍以噪声增益(G+1)被放大。对于精密衰减的情况(G< 1),这种特性可能会出现疑问。这种情况一个常见的实例是有源滤波电路,其中阻带增益可 能很小,但阻带噪声增益至少为1。
只有放大器输入端产生的电压噪声和放大器同相输入端电流噪声流过该输入端的任何阻 抗 所产生的噪声(例如,偏置电流补偿电阻产生的噪声)才以噪声增益被放大。而电阻Ri产 生的噪声(不论是热噪声还是由反相输入端噪声电流引起的电压噪声)以与输入信号相同的方 法被放大G倍,但反馈电阻Rf产生的热噪声电压却没有被放大而以单位增益被缓冲送到输 出端。

问:什么是"爆米花"噪声?
答:在20多年前人们曾花了很大的精力研究这个"爆米花"噪声("popcorn" no is e)问题,它是一种偶然出现的典型低频噪声,表现为失调电压低幅度(随机)跳变。当通过扬 声器讲话时,这种噪声听起来好像炒玉米花的声,由此而得名。
在没有形成集成电路工艺时,根本不存在这个问题,"爆米花"噪声是由集成电路表面 工艺问题(如沾污)所致。当今对其产生原因已完全清楚,再不会有一个著名的运算放大器制 造厂家会出现因产生"爆米花"噪声而成为用户关心的主要问题。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top