运算放大器的噪声
问:为什么你们不公布噪声系数?
答:放大器的噪声系数(NF)用来表示放大器噪声与源电阻热噪声之比,单位为dB ,可用下式表示:
NF=20logVn(amp)+Vn(source)Vn(source)
其中Vn(amp)表示放大器噪声,Vn(source)表示源电阻热噪声。
NF对射频放大器来说是一项很有用的技术指标,一般总是使用相同的源电阻(50或75 Ω )来驱动射频放大器,但当这项指标用于运算放大器时容易引起误解,因为运算放大器在许 多不同应用中其源阻抗(不一定是阻性的)变化范围很宽。
问:源阻抗对噪声有何影响?
答:当温度在绝对零度以上时所有电阻都是噪声源,其噪声随电阻、温度和带宽 的增加而增加(随后我们将讨论基本电阻噪声或热噪声)。电抗不产生噪声,但噪声电流通过 电抗将产生噪声电压。
如果我们从某一个源电阻驱动一个运算放大器,那么等效输入噪声将是该运算放大器 的噪声电压,源电阻产生的噪声电压和放大器的噪声电流In流过源电阻产生的噪声电压的 rss和。如果源电阻很低,那么源电阻产生的噪声电压和放大器的噪声电流通过源电阻产生 的噪声电压对总噪声的贡献不明显。在这种情况下放大器输入端的总噪声只有运算放大器 的电压 噪声起主要作用。
如果源电阻很高,那么源电阻产生的热噪声对运算放大器的电压噪声和由电流噪声引 起的电压噪声都起主要作用。但值得注意的是,由于热噪声只是随电阻的平方根增加,而由 电流噪声引起的噪声电压直接与输入阻抗成正比,所以放大器的电流噪声对于输入阻抗足够 高的情况下总是起主要作用。当放大器的电压噪声和电流噪声都足够高时,则不存在输入电 阻为何值时热噪声起主要作用的问题。
图81 热噪声与源电阻的关系
问:有关运算放大器的噪声我应该知道些什么?
答:首先,必须注意到运算放大器及其电路中元器件本身产生的噪声与外界干扰 或无用信号并且在放大器的某一端产生的电压或电流噪声或其相关电路产生的噪 声之间的区别。
干扰可以表现为尖峰、阶跃、正弦波或随机噪声而且干扰源到处都存在:机 械、靠近电 源线、射频发送器与接收器、计算机及同一设备的内部电路(例如,数字电路或开关电源)。 认识干扰,防止干扰在你的电路附近出现,知道它是如何进来的并且如何消除它或者找到对 付干扰的方法是一个很大的题目。
如果所有的干扰都被消除,那么还存在与运算放大器及其阻性电路有关的随机噪声。它 构成运算放大器的控制分辨能力的终极限制。我们下面的讨论就从这个题目开始。
问:好,那就请你讲一下有关运算放大器的随机噪声。它是怎么产生的?
答:在运算放大器的输出端出现的噪声用电压噪声来度量。但是电压噪声源和电 流噪声源都能产生噪声。运算放大器所有内部噪声源通常都折合到输入端,即看作与理想的 无噪声放大器的两个输入端相串联或并联不相关或独立的随机噪声发生器。我们认为运算放 大器噪声有三个基本来源:
·一个噪声电压发生器(类似失调电压,通常表现为同相输入端串联)。
·两个噪声电流发生器(类似偏置电流,通过两个差分输入端排出电流)。
·电阻噪声发生器(如果运算放大器电路中存在任何电阻,它们也会产生噪声。 可把这种噪声看作来自电流源或电压源,不论哪种形式在给定电路中都很常见)。
运算放大器的电压噪声可低至3 nV/Hz。电压噪声是通常比较强调的一项技 术指 标,但是在阻抗很高的情况下电流噪声常常是系统噪声性能的限制因素。这种情况类似于失 调,失调电压常常要对输出失调负责,但是偏置电流却有真正的责任。双极型运算放大器 的电压噪声比传统的FET运算放大器低,虽然有这个优点,但实际上电流噪声仍然比较大。 现在的FET运算放大器在保持低电流噪声的同时,又可达到双极型运算放大器的电压噪声水 平 。
问:电压噪声达到3 nV/Hz的单位是怎么来的?它的含 义如何?
答:让我们讨论一下随机噪声。在实际应用中(即在设计者关心的带宽内)许多噪 声源都属于白噪声和高斯噪声。白噪声是指在给定带宽内噪声功率与频率无关的噪声。 高斯噪声是指噪声指定幅度X出现的概率服从高斯分布的噪声。高斯噪声具有这样的特性: 当 来自两个以上的噪声有效值(rms)进行合成时,而且提供的这些噪声源都是不相关的(即一种 噪声信号不能转换为另一种噪声信号),这样合成的总噪声不是这些噪声的算术和而是它们 平 方和的平方根(rss)(这意味着噪声功率线性叠加,即平方和相加)。例如有三个噪声源V 1,V2和V3,它的rms和为:
V0=V21+V22+V23
- 运算放大器选择指南 助您获得上佳的噪声性能(09-10)
- 运算放大器组成阶梯波发生器电路图(10-11)
- 匹配的电阻器最大限度地提高放大器的性能(04-10)
- 放大器漏电流分析(02-07)
- LTC6268-10 示波器差分探头(12-02)
- 如何用运算放大器构成最精确的限幅器(09-23)