微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 单片机数字滤波的算法

单片机数字滤波的算法

时间:10-12 来源: 点击:

值后进行算术平均。

算法的程序代码如下:

char filter()

{

int sum=0;

for (count=0;count<N;count++)

{

    sum+=get_data();

    delay():

}

return (char)(sum/N);

}

说明:算术平均滤波算法适用于对具有随机干扰的信号进行滤波。这种信号的特点是有一个平均值,信号在某一数值附近上下波动。信号的平均平滑程度完全到决于N值。当N较大时,平滑度高,灵敏度低;当N较小时,平滑度低,但灵敏度高。为了方便求平均值,N一般取4、8、16、32之类的2的整数幂,以便在程序中用移位操作来代替除法。

(4)加权平均滤波算法

由于前面所说的"算术平均滤波算法"存在平滑度和灵敏度之间的矛盾。为了协调平滑度和灵敏度之间的关系,可采用加权平均滤波。它的原理是对连续N次采样值分别乘上不同的加权系数之后再求累加,加权系数一般先小后大,以突出后面若干采样的效果,加强系统对参数变化趋势的认识。各个加权系数均小于1的小数,且满足总和等于1的结束条件。这样加权运算之后的累加和即为有效采样值。其中加权平均数字滤波的数学模型是:

                              

式中:D为N个采样值的加权平均值:XN-i为第N-i次采样值;N为采样次数;Ci为加权系数。加权系数Ci体现了各种采样值在平均值中所占的比例。一般来说采样次数越靠后,取的比例越大,这样可增加新采样在平均值中所占的比重。加权平均值滤波法可突出一部分信号抵制另一部分信号,以提高采样值变化的灵敏度。

样例程序代码如下:

char code jq[N]={1,2,3,4,5,6,7,8,9,10,11,12}; //code数组为加权系数表,存在程序存储区

char code sum_jq=1+2+3+4+5+6+7+8+9+10+11+12;

char filter()

{

char count;

char value_buff[N];

int sum=0;

for(count=0;count<N;count++)

{

    value_buff[count]=get_data();

       delay();

}

for(count=0;count<N;count++)

       sum+=value_buff[count]*jq[count];

return (char)(sum/sum_jq);

}

(5)滑动平均滤波算法

以上介绍和各种平均滤波算法有一个共同点,即每获取一个有效采样值必须连续进行若干次采样,当采速度慢时,系统的实时得不到保证。这里介绍的滑动平均滤波算法只采样一次,将一次采样值和过去的若干次采样值一起求平均,得到的有效采样值即可投入使用。如果取N个采样值求平均,存储区中必须开辟N个数据的暂存区。每新采集一个数据便存入暂存区中,同时去掉一个最老数据,保存这N个数据始终是最新更新的数据。采用环型队列结构可以方便地实现这种数据存放方式。

程序代码如下:

char value_buff[N];

char i=0;

char filter()

{

     char count;

     int sum=0;

     value_buff[i++]=get_data();

     if(i==N)

         i=0;

for(count=0;count<N;count++)

       sum=value_buff[count];

return (char)(sum/N);

}

今天就写到这,因为数字滤波的算法还有很多种方法,比如一阶滞后低通滤波器(惯性滤波法),限时滤波,容错冗余三中取二滤波法等等。不过由于个人能力和时间的原因,还没能把它们一一地列出。以后我会不断地找资料把它们完善。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top