微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 非一般的晶体管

非一般的晶体管

时间:10-12 来源:SEMI半导体产业网 点击:

"一个蝴蝶可以刮起一阵风,一个士兵可以开始一场战争",那么一项伟大的发明呢?

1947年12月,美国贝尔实验室的肖克莱、巴丁和布拉顿组成的研究小组,研制出一种点接触型的锗晶体管。于是乎,大名鼎鼎的、影响人类文明进程的晶体管就此诞生。1956年,这三人因发明晶体管同时荣获诺贝尔物理学奖。

在晶体管诞生60多年后的今天,其体积几乎缩小到了极限:贝尔实验室1947年制造的第一个晶体管是手工打造的,而现在一个针头的空间就能塞进去6000多万个32nm晶体管(针头直径约1.5毫米);如果百米飞人博尔特的步幅是32nm,那么完成一百米赛程需要跑31.25亿步;32nm晶体管的栅极长度约为30nm,英文句点符号"."的面积大约有0.1平方毫米,可以放进去400多万个32nm晶体管;Intel 32nm技术的栅极高度是0.9nm,而报纸的平均厚度为0.1毫米,也就是说111111个栅极堆叠起来才有一张报纸厚。

所有数字都揭示着晶体管已经"小"到令人叹为观止。但是凡事都有个极限,无限接近物质的极限意味着晶体管已经步入老年了吗?

晶体管的前世今生
晶体管被认为是现代历史中最伟大的发明之一,在重要性方面可以与印刷术、汽车和电话等发明相提并论。晶体管的本名是半导体三极管,是内部含有两个PN结,外部通常为三个引出电极的半导体器件。它对电信号有放大和开关等作用,应用十分广泛。晶体管出现后,人们就能用一个小巧的、消耗功率低的电子器件,来代替体积大、功率消耗大的电子管了。

晶体管的发明为后来集成电路的问世吹响了冲锋号。除了能够很方便的储存信息、发送信号,晶体管还具有当初人们不曾料想的特性:它可持续缩小体积,这使得晶体管与电子产品可以稳定地降价,且功能变得越来越好。这一理论最终成就了摩尔定律。

2006年2月英特尔正式推出45nm晶体管(图1)。与65nm芯片相比,其密度提高2倍,达10亿个晶体管,开关速度提高20%,功耗降低30%。这种45nm工艺采用了Cu互连、低k介质,应变硅和193nmArF光刻。

32nm晶体管则采用第二代高k金属珊技术,即栅的长度为30nm左右,等价的栅极氧化物厚度仅为0.9nm,同时整体性能将有超过22%的提升。32nm SRAM 测试芯片最早出现在2007年9月,芯片尺寸可以从45nm的0.346μm2减小到0.171μm2。回顾Intel的晶体管技术发展历程,Intel 每两年即可将晶体管的尺寸缩小30~50%(图2)。

摩尔定律是一个残酷无情的 "监工",就在最新技术刚刚投入生产,人们认为可以暂时停下脚步好好休息一下时,往往会愕然发现,下一代技术在两年后就要按时推出,再过两年又一代新技术……

IBM院士Stuart S.P. Parkin博士介绍说,有摩尔定律的指引,新器件的出现是必然的,它的进步速度在很大程度上取决于相关材料、设备的进展,当然也和市场紧密相连。在晶体管的技术路线图上,22nm节点之后的等比例缩小很可能需要在SOI或体硅晶圆上采用全耗尽CMOS结构。也很可能会采用TSV 3-D互连和SiC应力层。

向新器件结构的转换已经启动(图3),在15 nm技术路线图上,IBM和英特尔已经确认了全耗尽CMOS结构,而一些其它的垂直晶体管结构也得到了极大重视。部分耗尽或传统的体硅晶体管变得愈加困难,为了获得所需的短沟性能,需要全耗尽器件架构——像finFET这样的垂直器件或平面SOI——才可以完成对沟道的控制。

尽管普遍的观点是全耗尽结构会出现在15nm节点,但IBM已经考虑22nm技术节点时,在其旗舰MPU工艺技术中采用全耗尽工艺。英特尔在22nm还将继续采用体硅技术。英特尔将于2011年底推出采用22nm工艺的MPU。去年九月英特尔发布了带有SRAM阵列和周边逻辑电路的22nm测试芯片,其中每个存储器阵列为364Mb,芯片共有290亿个晶体管。该芯片采用了第三代后栅极高k/金属栅工艺,也就是在栅极工艺的最后沉积栅介电层和金属。
 
应变硅如何"应变"?
半导体工业缩小芯片的主要动机是:增加每一片晶圆上的芯片数目,从而降低成本;缩短载流子扩散路径,从而提高芯片处理速度。但是,芯片小型化使工艺技术面临着新的问题:散热和量子隧道效应的处理。一个新的思路就是寻找新的电子材料,基于硅材料的应变硅技术由此诞生。

在2009年北京微电子论坛先进半导体工艺研讨会上,中芯国际的技术处长吴汉明博士为大家展示了晶体管未来的走向,应变硅技术是杀手锏之一。应变硅是满足65nm以下工艺要求的一种高端硅基新材料。应变硅由在SiGe等原子距离较大的衬底上外延生长Si而成。该材料的制作原理之一是在锗硅上外延硅,由于硅原子在锗原子之间力的作用下发

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top