基于DSP的高压电源的设计原理分析
时间:07-23
来源:3721RD
点击:
器输出高电平,使VD2从原来的反向偏置状态转变为正向导通,并将同相端电位提升为高电平,使电压比较器一直稳定输出高电平。同时,该过流信号还送到DSP内,通过程序中断来控制PWM输出,起到保护作用。
4 软件设计
该设计由DSP进行控制,DSP产生的5路PWM波,1路用于前级Buck电路调压,另外4路用于高频逆变。采样反馈电路将每级输出反馈回DSP,通过与设定电压比较来控制PWM输出的变化。该设计程序流程图如图6所示。
5 实验结果与分析
电源供电输入为220 V二相交流电,整流后母线电压约为300 V,功率管为2MBI100N-060型IGBT,最大耐压600 V,最大电流100A。滤波电感约为1 mH,电容为560μF/1 kV,后级高压侧谐振电感L=300μH,谐振电容C≈1μF,工作频率约为19 kHz,最大谐振电流30 A。经取样电阻取样后得到图7所示结果。
6 结论
该设计提出了一种设计高压电源的新思路,并且进行了大量实验。实验结果表明,用Buck电路做前级调压,用DSP对5个开关管进行控制是可行的,并且实验效果比用SG3525要好很多,而且该系统的体积大大减小,电路结构简单清晰,调压响应平稳、快速;输出电压稳定度高,纹波系数小,电路抗干扰能力强;完全能满足X射线管的要求,而且有望实现高压电源的嵌入式应用。
- 在采用FPGA设计DSP系统中仿真的重要性 (06-21)
- 基于 DSP Builder的FIR滤波器的设计与实现(06-21)
- 达芬奇数字媒体片上系统的架构和Linux启动过程(06-02)
- FPGA的DSP性能揭秘(06-16)
- 用CPLD实现DSP与PLX9054之间的连接(07-23)
- DSP+FPGA结构在雷达模拟系统中的应用(01-02)