基于DSP的单相精密电源硬件系统设计
图4 电压信号的输出与检测
4.2 电流信号的输出和检测
电路如图5,和电压输出的电路一样,A点为功率放大器的输出端,基于取得检测信号Urf相同的原理,获得检测信号Irf,只是置位电阻阻值为0.15欧。通过电流互感器得到电流输出,电流输出再通过另一个电流互感器得到检测信号。两个电流互感器均为三个抽头。三对抽头分别经过三个继电器J1A、J5A、J10A连接,用于检测的电流互感器的公共端即为电流输出端。
图5电流检测补偿电路
5 反馈放大和报警电路
为了保证电源输出的精度,所以在D/A转换和输出之间设计了一个反馈和放大电路。同时在产品中,电源的输出中不能出现电压电路短路和电流电路开路的情况。所以应该在电路添加报警电路,。报警电路要包括光报警和声音报警。如图6所示,电路分为三个部分:放大电路、报警电路和反馈电路。经过D/A转换和滤波后的连续平滑正弦波电源信号作为前馈信号的同时,经过跟随器与检测信号Uwf(Iwf)经反向跟其后的信号相加,它们的和通过一个PID调节器之后与前馈信号Un,检测信号Urf(Irf)相加后输入PI调节器,得到的值即为输入放大电路的 U0。其中检测信号Urf(Irf)经过反向跟随器后,得到输入DSP的A/D转换电路的信号。在电路中,需要检测输出电压和电流来作为反馈信号,用来输入DSP,来显示幅度的。其原理图如图7所示:模拟开关CD4051控制信号XF1的控制下不断得对反馈回来的电压和电流
图6 反馈放大、报警电路
图7 电压和电流反馈电路方框图
进行采样,在相临的两个周期分别向AD7135输入电压和电流信号。模拟量输入AD7135转换为数字量,转换完毕后,数据分5次输出,共5位BCD码即D5-D1与其对应,每当AD7135转换完成的时候,向C33发送一个中断脉冲,C33中断一次,读入一位BCD码数据,在第五次中断时,即最后一次数据采集完后,停止AD转换。AD转换的数据经锁存器后进入DSP,并且在显示器中分别显示出来电压和电流的值。
此外,为了分担DSP的分析、管理等方面的任务,在系统设计时对专门负责与上位机通信的串行异步通信口也作了相应的扩展;为便于人机对话,还有振荡器方式的时钟电路,MAX811与DSP的接口的复位电路,键盘显示电路等设计,限于篇幅,均略去。
6.结论
设计的单相高精度电源采用TMS320V33作为其信号生成和处理元件,并完成幅度、频率、相位的控制、报警显示等一系列任务。选用DAC0832作为D/A转换模块,分别把离散的DSP正弦输出信号转化为相应的模拟电压信号和模拟电流信号,并使用PA03作为功率放大器件。由键盘和显示器组成人机对话窗口。电源信号幅度、频率、相位要求均通过键盘控制达成,频率和相位完全由DSP产生的离散正弦信号控制,幅度值则由DSP控制,D/A转换的参考电压幅值和继电器的闭合来达到要求。输出电源信号的速度和精度除依赖于DSP的性能外,还与外围器件存储器、D/A转换器、功率放大器和其它阻容模拟开关电路有关。用两片ADC0832扩展成16位并行D/A转换以提高速度。采用低失调,小温漂,宽输入的OP07作为运算放大器,采用高精度、大功率、功耗小的PA03作为功率放大器。还设计了电流补偿电路、PI调节电路以保证精度。应用该设计设计出的电源在实际应用中具有精度高、速度快、稳定性高特点。
- 在采用FPGA设计DSP系统中仿真的重要性 (06-21)
- 基于 DSP Builder的FIR滤波器的设计与实现(06-21)
- 达芬奇数字媒体片上系统的架构和Linux启动过程(06-02)
- FPGA的DSP性能揭秘(06-16)
- 用CPLD实现DSP与PLX9054之间的连接(07-23)
- DSP+FPGA结构在雷达模拟系统中的应用(01-02)