基于DSP的低功耗高速数据采集系统设计
2.2 高效率电源的设计
VC5509工作在双电源电压下,其核心电压为1.6V,I/O电压为3.3V。对双电压电源系统,常用的是有线性稳压电源以及开关稳压电源,根据两者对电压转换的原理的不同,电压的转换效率也有很大区别。对于线性稳压电源,多用在较大的负载电流场合,其整体系统功耗分为两部分,一部分为所有低功耗器件消耗,另一部分为线性稳压器件本身所消耗。以输入5V直流电压转换到3.3V电压为例,理论电压转换效率约为66%。假设系统电流为50mA,则整个系统功耗实际上为50×5=250mW,而并非50×3.3=165mW。而对于开关稳压器件,选用合适的器件,电压转换效率可以达到95%以上,电源器件本身消息功率可以极少,对相同的系统电流,整体系统功耗极大降低。因此,在低功耗小电流场合,选用开关稳压电源器件更为适合。
这里选用的是TI公司的TPS62000系列开关稳压器件TPS62000(可调输出)和TPS62007(固定输出3.3V)。TPS62000系列是专为低功耗CPU而设计的一系列电源器件,在输出电流为10mA时,效率可达90%。同时,TPS62000系列工作在低功耗模式时,可根据负载电流的大小自动在PWM和PFM模式之间切换,以节省功耗。在双电源系统中,核心电压必须先于I/O电压上电,后于I/O电压断电,这里利用TPS62000的PG信号作为TPS62007的EN信号来实现。
2.3 系统的工作模式及接口设计
由于VC5509不具备异步串口,因此利用并/串转换芯片TL16C750将其并口扩展为异步串口对外接口。
对整个系统而言,选择工作在较低电压下的低功耗芯片可以降低系统功耗;同时,设置适合的工作方式也可以降低系统功耗。对系统中大多数芯片而言,都带有关断控制或者自动工作模式切换功能,因此不需人为干预,系统的功耗最终很大程度上落在DSP上。在不影响系统工作性能的前提下,适当降低DSP工作主频可以降低系统功耗。
利用以上方案搭建的VC5509低功耗高速采集系统,在保证达到50kHz对四通道数据进行同步采集的要求下,适当降低DSP工作主频可以降低系统功耗,满足实际要求,并且已经得到验证。
- 一种基FPGA和DSP的高性能PCI数据采集处理卡设计(08-26)
- 基于LabVIEW的USB实时数据采集处理系统的实现(03-26)
- 基于DSP和USB的高速数据采集与处理系统设计(05-01)
- 基于DSP和USB的三维感应测井数据采集系统(06-14)
- 多通道同步数据采集及压缩系统(08-12)
- 基于DSP的高速数据采集系统设计方案(06-25)