微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于DSP实现的开关逆变电源

基于DSP实现的开关逆变电源

时间:02-15 来源:3721RD 点击:

1 引言

随着工业和科学技术的发展,用户对电能质量的要求越来越高。包括市电在内的所有原始电能可能满足不了用户的要求,必须经过处理后才能使用,逆变技术在这种处理中起到了重要的作用。传统的逆变技术多为模拟控制或模拟与数字相结合的控制系统,其缺点为

1)控制电路的元器件比较多,体积庞大,结构复杂;

2)灵活性不够,硬件电路一旦设计完成,控制策略就不能改变;

3)调试比较麻烦,由于元器件特性的差异,致使电源一致性差,且模拟器件的工作点漂移,会导致系统参数的漂移,从而给调试带来不便。

因此,传统的逆变器在许多场合已不适应新的要求。

随着高速、廉价的数字信号处理器(DSP--Digital Signal Processor)的问世,于是便出现了数字电源(DPS--Digital Power Supply)。其优点有

1)数字化更容易实现数字芯片的处理和控制,避免模拟信号传递的畸变、失真,减少杂散信号的干扰;

2)便于系统调试;

3)如果将网络通迅和电源软件调试技术相结合,可实现远程遥感、遥测、遥调。

这些使得逆变电源数字化控制成为今后的发展趋势。

本文采用TI公司专门为电机及电力电子领域设计的TMS320LF2407型DSP作为控制器,介绍数字化周波逆变器的硬件设计和软件设计。

2 TMS320LF2407的结构特点

TMS320LF2407具有高速信号处理和数字化控制功能所必需的结构特点。将其优化的外设单元和高性能的DSP内核相结合,可以为各种类型电机提供高速和全变速的先进控制技术。其主要特点为

1)其系统运行主频达30MHz,使得指令周期缩短到33ns,绝大部份指令均可在单周期内完成,提高了控制器的实时能力。

2)2个事件管理器模块EVA和EVB,每个包括2个16位通用定时器;8个16位的脉宽调制(PWM)通道。它们能够实现三相反相器控制;PWM的对称和非对称波形;当外部引脚PDPINTx出现低电平时快速关闭PWM通道;可编程的PWM死区控制以防止上下桥臂同时输入触发脉冲;16通道A/D转换器等功能。事件管理模块适用于控制交流感应电机、无刷直流电机、开关磁阻电机、步进电机、多级电机和逆变器。

3)10位A/D转换器最小转换时间为500ns,可选择由两个事件管理器来触发两个8通道输入A/D转换器或一个16通道输入的A/D转换器。

4)高达40个可单独编程或复用的通用输入/输出引脚(GPIO)。

3 系统结构

本系统由主电路和控制电路两部分组成,如图1所示。主电路部分,采用移相式零电压、零电流(PS-ZVZCS)全桥变换器和相控周波变换器PCCYC(Phase ControlLED Cycle Converter)。跟其它变换器相比,相控周波变换器始终都可以工作在第一、三象限,与移相技术相结合,可以极大地提高高频变压器的工作效率。同时,采用高频环进行逆变,因而无须采用工频变压器,使体积减小。全桥变换器部分,利用可饱和电感Lr和隔直电容Cr实现对环流的阻断,可以在很宽的负载范围内实现超前桥臂的ZVS和滞后桥臂的ZCS,减小了开关应力,降低了损耗,提高了工作效率。Lr和Cr的选择可参考文献[4]。控制部分,采用快速、高效的DSP作为核心控制器,通过光耦隔离,并有IGBT自保护的专门驱动芯片EXB841来驱动主电路中的功率开关管。与采样电路,保护电路配合,可对输出实行实时控制,具有较快的动态响应速度和良好的输出特性。

图1 系统结构图

4 工作原理

Q1~Q4构成全桥,Q5、Q6组成周波变换器。开关管的驱动波形如图2所示。

图2 开关管的驱动波形

整个工作过程可分为4个阶段,下面分别说明。

第一阶段 Q1、Q4导通

当Q1、Q4(有相位差)导通,并让Q5提前导通,直流侧的能量便可传输到输出端。此时谐振电感储能,Q5软开通,减少了开关损耗。如图2中ug5所示。

第二阶段 谐振

由于电路隔直电容和谐振电感(包括变压器中漏感)谐振,电感在第一阶段所保存的能量得以释放。当谐振电流到零时,关断Q1。此阶段Q2、Q4导通,Q5延迟一段时间再关断。如图2中ug5所示。

第三阶段 Q2,Q3导通

在此阶段,使Q6在Q2,Q3导通前提前导通。当Q2,Q3(Q1,Q2之间有死区)导通时,直流侧的能量便可传递到输出端,此时Q6为软开通。如图2中ug6所示。

第四阶段 谐振

工作原理同第二阶段类似,此时电流方向与第二阶段相反,当电感上的能量释放完毕,关断Q6。此时一个周期便结束,开始下一个周期。

从图1可以看出,无论变压器副边电压极性如何,若Q5导通、Q6关断,则输出端OUT1为正,OUT2为负;若Q6导通,而Q5关断,则OUT2为正,而OUT1为负。所以,控制Q5,Q6的导通顺序,即可控制输出端的极性,并可获得多种波形,例如交流、脉冲等波形均可实现。如要输出正弦波的正半周时,PULS1控制Q1,Q4

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top