微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于DSP的滚动轴承实时故障诊断系统设计

基于DSP的滚动轴承实时故障诊断系统设计

时间:07-03 来源: 点击:

的实现;字符、汉字、图形的显示;定时器、串行口、USB、外部中断的响应;程控放大器、液晶显示屏、系统时间的设置控制;通讯协议的实现;文件系统的存储;内存管理等。

  系统软件主要实现的功能如下:

  (1) AD传送来的数字信号通过FFT变换,将时域信号变换为频域信号,进而得到振动信号的频谱图。

  (2) 系统软件采用BP神经网络的诊断方法对信号进行智能诊断[6]。把能反映振动信号特征的信息作为神经网络的输入,把故障位置、故障类型和严重程度等诊断结论作为网络的输出,用BP算法对网络进行训练[7],然后用这一神经网络对实际的轴承解调信号进行自动诊断,报告故障。

  (3) 解调波的各分量以及故障位置、故障类型、严重程度和轴承号等数据通过大屏幕LCD显示,便于人工辅助判断。

  (4) 键盘具有功能快捷键、英文及数字键支持人工数据录入与交互。操作过程中可以通过按键设置系统的参数、功能,控制采样长度等等。

  (5) 所有测量数据被有效保存,便于数据管理。系统可将测量数据上传到上位机中存储和进行进一步的故障分析,同时也可下载上位机中轴承库的轴承具体型号参数及其特征频率等相关信息。


  5.结束语

  传统的振动诊断仪一般都是对振动的有效值、最大幅值、峭度等时域特征信息进行判断而诊断故障的,诊断方式简单,信号处理十分粗糙、可信度低。本系统是利用BP神经网络对故障进行诊断的,实现了诊断的智能化,提升诊断速度和诊断精度。另外本系统是采用硬件共振解调技术来实现振动信号分析以及故障诊断的,它比用软件实现共振解调技术的好处是在故障形成的初期,冲击故障信号较弱时就可以对故障进行成功的诊断,这样就可以对早期故障设备进行重点监视,同时也有充裕的时间采购替换件。因此本系统在工程中拥有很广阔的应用空间。

  本文作者创新点:本文利用DSP系统高速信号处理的性能,实现了滚动轴承的实时智能诊断。采用硬件共振解调技术,避免了软件共振解调技术带来的早期故障难以发现的不足,能够广泛应用于中小设备的滚动轴承故障诊断。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top