微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于多DSP和FPGA的实时双模视频跟踪装置设计

基于多DSP和FPGA的实时双模视频跟踪装置设计

时间:07-19 来源:21电子网 点击:

动阴影和背景中的阴影都检出来,只是模板中的参数要根据现实情况和经验来定。由于静止物体的阴影也是不动的,所以静止目标可以归入背景中。由公式(2)可检测出动目标。

(3)形心跟踪算法

  形心跟踪是将整个跟踪波门内的图像二值化,用求目标形心的办法获得目标位置参量。由于形心值是相对于目标面积归一化的值,因此形心值不受目标面积、形状以及灰度分布细节的限制。同时,形心跟踪的计算颇为简便。但是,形心跟踪器受目标的剧烈运动或目标被遮挡的影响较为严重,瞄准点漂移是远距离跟踪系统的主要误差之一。这也是我们采用目标轨迹拟合算法来外推运动目标位置,并与相关跟踪法并行工作的原因。由于形心算法比较普及,本跟踪装置直接采用了改进的形心跟踪算法,用目标峰值自适应检测算法使系统的计算可靠性和实时性达到最佳结合值。

  (4)相关跟踪算法

  相关跟踪是对目标图像和输入图像进行相关运算,通过对搜索区域每次运算结果进行处理获取相关峰值,从而确定目标在输入图像的位置。在图像目标背景比较复杂以及背景与目标无明显灰度差的场合,相关跟踪具有较好的抗干扰能力,可以应付一定的形变和灰度畸变,能对复杂场景中的指定目标进行稳定跟踪,并对目标交叉遮挡有较好的记忆效果,因此我们采用基于二维最小绝对差累加和算法的相关匹配算法进行图像特征识别,相似性度量为:

(5)双模式组合算法[6]

  如表1所示,由于形心跟踪和相关跟踪各有优缺点,具有较大的互补性[7] 。采用形心跟踪算法的DSP和相关匹配跟踪算法的DSP同时工作,按照各自的图像分割方法分割出目标和背景,抽取目标的特征,输出目标的跟踪信息。最后在主控的TMS320c6416进行检查,把相关匹配跟踪模式中采用相关峰值的相关度函数构造的目标位置置信度和形心跟踪模式的置信度进行置信度判决,从而决定选择跟踪控制信号,同时对不适当的跟踪模块进行重新装定。

  (6)目标暂时丢失下目标轨迹外推算法

  在跟踪目标的过程中,目标在视场中可能会被短时遮挡而丢失;另外当目标在视场中停留,则目标可能融入背景,也会出现目标丢失的现象。针对这两种情况,当目标短时遮挡,根据存储记忆以前各帧和本帧的目标信息,采用微分线性拟合外推方法预测下一时刻目标的位置。而当目标在视场停留时,首先按目标被遮挡处理,当外推有限步,或是外推到接近边界时目标仍未出现时,则确定该目标在视场停留,标记停留位置,当目标再次出现时继续完成跟踪。

4、系统工作状态分析

  为实现使自动有序的跟踪,我们确定系统各个跟踪状态和各状态之间的转换条件。

  本系统跟踪状态有四种:

  S0 搜索状态 发生在系统初始工作或目标完全丢失阶段。

  S1 捕获状态 系统处于发现目标状态。

  S2 正常跟踪状态 系统处于对目标的正常跟踪中。

  S3 预测跟踪 目标偶尔丢失时,系统通过自学习对当前目标进行预测跟踪,并试图再捕获目标。

  本系统转换条件有三种:

  C1目标截获。

  C2目标偶然丢失,指目标瞬间丢失,其运动仍具有可预测性。

  C3目标深度丢失,指目标丢失一段时间,其运动不可预测

系统状态转换情况如图3所示。在视频跟踪装置启动并初始化后,进入搜索状态S0,系统按照一定的扫搜规律进行搜索;当形心跟踪模块发现移动目标,则进入捕获状态S1;由相关跟踪模块对目标进行识别,确认后进入正常跟踪状态S2;当目标偶尔丢失时,系统通过自学习对当前目标进行预测跟踪,并试图再捕获目标,进入预测跟踪状态S3;如果目标完全丢失,则改变搜索策略,重新再搜索,以便有可能再次捕获目标。

5、结论

  本视频跟踪装置在设计上能完成对移动目标的检测和跟踪,初步实验结果表明采用基于DSP和FPGA的硬件实现算法使系统的实时性能得到很大提高。双模式的图像跟踪算法使系统适合多种背景下的移动目标跟踪,自适应能力强,抗干扰性能好,具有锁定目标短暂丢失后的再次捕获能力,提高了跟踪的可信度。但本设计拟在下面两个方面作进一步的研究。一是考虑本装置的军事应用背景,需要目标,尤其是远方目标有相对较高的速度才能触发系统捕获,因此没有考虑摄像头自身跟踪时的运动补偿[8]。否则,必须加入摄像机运动估计和补偿;二是对移动目标的识别能力还需加强,在设定特定跟踪目标上,尤其是跟踪到多个移动目标时,不具备区分的能力,需要改进到能识别设定中的跟踪目标并完成对设定目标的跟踪。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top