基于FPGA的65nm芯片的设计方案
纪90年代后期和2000年早期过于乐观ASIC器件的量产能力,仅采用产量这一因素来衡量应用开发,结果在财务上失败了。在某些情况下,还是有人不考虑我们已经提到的成本问题,仍然保持一副乐观的态度。
FPGA在总成本上胜出ASIC
65nm和后续工艺节点上需要考虑的是合理的资金分配,而ASIC设计方法成本高,预期收益回报较低。设计人员应认真考虑使用现场可编程门阵列(FPGA)。这些器件解决了当今设计人员面临的功耗问题,有较好的ROI。
对于迫切的功耗问题,Altera高端65nm Stratix III系列FPGA通过各种方法来帮助开发人员降低功耗。为了使开发人员能够在功耗需求和电路性能上达到平衡,Stratix III系列为开发人员提供了全面可编程开发环境,结合其多阈值晶体管和逻辑门长度可变晶体管技术,以及超薄和三门氧化层等技术,不但保持甚至提高了性能,而且把泄漏功耗降到了最低。
Stratix III系列的体系结构含有高性能自适应逻辑模块(ALM)以及多路互联,降低了功耗需求。它还采用了两种创新的低功耗技术。可编程功耗技术使Stratix III中的每一可编程逻辑阵列模块(LAB)、DSP模块以及存储器模块能够独立工作在高速或者低功耗模式下,利用Quartus II软件的PowerPlay功
能,根据性能需要,自动控制每个模块的工作模式。另一功耗优化技术是可选内核电压,设计人员利用该技术可以为高性能应用选择1.1V内核电压,针对低功耗应用选择0.9V内核电压。所有这些特性使FPGA能够在设计上平衡速率和功耗,开发人员不必在某一方面作出牺牲。
对于迫切的资金问题,在综合考虑产品研发成本以及货物售出成本(COGS)后,FPGA是开发人员在ASIC替代方案上的最佳选择。在当今竞争激励的市场上,COGS是决定产品收益和毛利润的主要因素,许多设计人员在考虑FPGA时非常重视它。
FPGA设计的研发成本要比ASIC低几个数量级,开发人员设计FPGA时,不用面对数百万美元的模板成本,不需要在晶体管级单元布局布线上的高级专业技能,也不需要昂贵的自动设计工具和工艺库。Altera Quartus II软件等全面的开发工具处理设计中的物理细节问题,使用户能够将精力集中在系统级设计上。
FPGA的可编程能力还避免了今后大量的研发开支。在产品生命周期中,如果需要在已有设计中加入新功能,对FPGA重新进行编程便可以简单地实现功能改进。而对ASIC设计进行微小的改动也需要在新模板上投入大量人力物力。
认识到可编程优点的开发人员可能会考虑基于处理器的ASIC设计方法。在这一方面,FPGA同样具有优势。可编程逻辑在实现功能上效率要比软件高得多,和基于处理器的设计相比,不但降低了功耗,而且提高了任务执行速度。在基于处理器的设计中,FGPA的确经常被用作硬件加速器。
各种客户群大量采用FPGA,使FPGA的产效在消费类设计上和大批量ASIC水平相当。量产也使得FPGA供应商有足够的收益来切实投入研发。结果,FPGA在体系结构、设计和工艺上是目前最先进的技术,足以和最好的ASIC进行竞争。而且,研发上的投入也保证了FPGA成为功能更强大、质量更好的可靠器件。
对量产的预测已经得到证实。在过去几年中,FPGA的收益超出了半导体市场的总体水平,而且有加速发展的趋势,原因在于芯片技术的复杂度越来越高,业界大量应用降低了对产品量产的预期。所有因素都对FPGA更加有利,而非ASIC。
随着半导体技术在65nm上的突破,人们越来越关心功耗和开发成本问题。使用这些技术的芯片物理设计遇到了更多的挑战,ASIC设计方法实现起来更加困难。设计人员转向基于FPGA的设计后,能够从芯片物理设计难题中抽身而出,让FPGA公司去解决这些问题,把精力集中在应用和系统设计的核心能力以及价值定位上。
- 基于FPGA的DSP设计方法(08-26)
- 电力电子装置控制系统的DSP设计方案(04-08)
- 基于DSP Builder的VGA接口设计(04-10)
- 基于DSP和USB的高速数据采集与处理系统设计(05-01)
- 数字信号处理(DSP)应用系统中的低功耗设计(05-02)
- 基于DSP的嵌入式显微图像处理系统的设计(06-28)