微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于DSP的高速铁路信号发送与接收模拟系统

基于DSP的高速铁路信号发送与接收模拟系统

时间:12-23 来源:互联网 点击:

[next]

4.系统主要软件设计

本系统软件设计主要包括:系统的整体控制、正交化FSK信号的发送和解调、数字编码信号的发送和解调。铁路轨道信号发送和解调过程主流程图如图3、图4所示。



图3 DSP主程序流程图


图4 ARM主流程图

4.1正交化FSK信号发送与解调

4.1.1信号的发送

上位机控制界面选择要发送信号的各项参数,包括制式、载频、调制频率、频偏等,通过USB传输信号信息发送到ARM,ARM根据信号信息设置定时器参数,发送DDS频率参数,完成FSK信号的发送。

4.1.2信号的解调

正交化FSK信号的解调过程中,采用了频域解调方法。频谱识别法能准确直观地找到特征功率谱,从而得出载频和调制频率。在正交化FSK信号中,调制频率和频偏存在倍数关系,可通过载频和调频计算出上下边频,即上下边频=载频+调频/2。

4.2新型数字编码信号发送与解调

4.2. 1信号的发送

新型数字编码信号码字共19 bit,该信号是由多个低频信号叠加形成的多音频调制信号,信号频谱中有很多的交叉调制项,通过DDS发送时,采用调相的方式实现。首先根据数字编码信号的特点建立相位表,然后初始化ARM的定时器,设置ARM定时器的中断频率为16 384 Hz。当每次中断发生时查表将相位表中的一个值写人AD9831的相位偏移寄存器,重复发送相位表的值即可完成信号的发送。

4.2.2信号的解调

解调方法采用脉冲解调原理。根据数字编码信号的特点,其频谱以载频为对称轴,载频两侧有两条占用码形成的对称的谱线,这三条谱线在频谱中幅值较大。根据这一特征,对采样信号求功率谱,找出其中的五条幅值较大的谱线按频率排序,然后按照相应规则判断载频是否存在。如果存在则继续解调,否则重新采样。原信号通过高通滤波器后量化处理,在幅值正过零处形成脉冲序列,低通滤波后得到调制信号。对调制信号加Hammlng窗截断后进行FFT变换,就得到了调制信号的频谱结构。新型数字编码信号的调制频率的间隔为0.64 Hz。为了能准确地识别出不同的调制频率,采用了ZFFT技术得到0.031 25 Hz的频谱观察分辨率。得到的低频信息还需进行CRC校验以检测解码的正确性。CRC校验的优先权高于奇偶校验,若CRC校验不通过,再对速度码进行奇偶校验,如果速度码正确,则对信息码循环纠错,直到通过CRC校验,解码结束。

4.3 USB通信设i十

本系统的USB通信部分实现ARM和上位机之间的通信。系统采用全速USB2.0标准进行批量数据传输。STM32F103ZET自带 USB2,0全速设备外设固件接口,即USB固件库。可以用此库进行USB宏单元简化开发。通过USB的高、低优先权中断处理函数USB_HPI()与 USB_LPI(),响应相关的批量传输中断。

4.4上位机软件设计

由于所发送信号参数复杂,如果用硬件实现信号的发送控制,必将造成面板设计复杂,而且显示的信息量也不多,因此采用PC机作为主控制端,在PC上用Borland C++Builder 6开发相关发送、接收界面。

基于TMS320C6722 DSP浮点处理器的轨道信号模拟系统,能够模拟高速铁路信号的发送和解调过程c该系统在实现轨道信号的实时发送过程中,能够随时添加单频干扰或双频干扰。本系统经过测试,性能稳定,解调结果正确,各项指标符合铁道部要求,达到了预期的要求。该系统可为国内高速铁路信号系统提供可行的解决方案,也可为教学和实验提供演示,具有很好的应用前景。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top