基于Virtex-5 FPGA的高速串行传输系统的设计与实现
摘要:作为高传输速率和低设计成本的传输技术,串行传输技术被广泛应用于高速通信领域,并已成为业界首选。在此基于对高速串行传输系统的分析,对实例进行了总体设计验证,最终达到高速传输的目的。
随着网络技术的不断发展,数据交换、数据传输流量越来越大。尤其像雷达,气象、航天等领域,不仅数据运算率巨大,计算处理复杂,而且需要实时高速远程传输,需要长期稳定有效的信号加以支持,以便能够获得更加精准的数据收发信息,更好的为工程项目服务。传统的并行传输方式由于走线多、信号间串扰大等缺陷,无法突破自身的速度瓶颈。而串行传输拥有更高的传输速率但只需要少量的信号线,降低了背板开发成本和复杂度,满足高频率远距离的数据通信需求,被广泛应用到各种高速数据通信系统设计中。
目前,高速串行接口取代并行拓扑结构已经是大势所趋。当今很多公用互连标准(如USB,PCI-Express)都是基于串行连接来实现高速传输的。相比于并行总线,串行连接的物理紧密度和链路韧性具有很多优势。因此,很多传输领域都转向了串行传输,如笔记本电脑显示互连、高速背板互连和存储器内部互连。该系统涉及到的技术主要包括:光纤传输、PCIE(PCI-Express)传输和DDR缓存技术,以及这几种技术在FPGA中融合为一个完整的串行传输链路,并实现了在两台服务器之间的高速数据传输测试,这对于实际工程应用具有重要的现实意义。
1 系统结构
高速串行传输系统作为数据采集、传输、存储中的一部分,对传输性能指标有着严格的要求。该系统要完成光信号到PCI-Express接口信号的相互转换,并在转换过程中完成数据的高速传输。信号一般可达4.25Gb/s,处理如此高的数据对硬件设计提出了很大的挑战。其中所包含的硬件有:高速光电转换电路,FPGA数据处理电路、DDRⅡ数据缓存电路、时钟管理电路、PCIE传输模块电路、电源模块电路、自定义扩展接口电路。系统框图如图1所示。
技术要求主要有以下几点:首先,传输卡中的4个光纤通道,每通道要达到2Gb/s以上。其次,PCIE传输速率不小于6Gb/s,支持DMA传输。再有,光纤和PCI-E传输误码率要小于1×10-10,连续传输相对稳定。
图1中各个模块的功能如下:Virtex5作为传输卡的核心,用来实现数据从光纤接口到PCIE接口的高速转换。光纤传输模块的作用是将内部数据经过编码后,通过光缆传输给接收系统,以及接收外来光数据,并将光数据传送给FPGA处理电路DDR缓存模块的作用,就是将传输过程中的高速数据,进行缓存,以保持数据的完整性。PCI-Express传输模块的作用,就是与PC之间实现PCI-Express传输协议,与PC实现串行数据传输,同时与外部扩展接口,DDR缓存,光纤传输模块实现内部并行数据的交换。QTE自定义接口模块的作用,就是进行外部功能扩展。比如,可以扩展高速数据采集板卡、存储硬盘卡、图像采集卡等。时钟管理模块的作用,是给光纤传输模块提供参考时钟。时钟频率由FPGA的时钟控制模块控制。根据光模块的性能,给出指定的时钟。PCI-Express的参考时钟,是通过芯片从PC主板上提取的。电源管理模块的作用,是给整个系统提供各种不同的电压。
2 系统模块设计与实现
为了实现所要求的系统配置,更好地发挥各模块自身及相互之间的作用,必须对模块间进行系统的协议分析。该系统的数据传输是双向的,既可以传输数据,也可以接收数据。它主要由电源管理模块,时钟管理模块,PCI-Express传输模块,DDR缓存模块,光纤传输模块和外部扩展接口组成。其中,时钟控制模块和Aurora发送模块、Aurora接收模块是整个设计的重点。
2.1 时钟控制模块
时钟控制模块主要用来控制FPGA外围的时钟芯片ICS8442来产生所需要的高信噪比、低抖动的差分时钟。
其模块电路如图2所示:输出其中的信号用来完成对ICS8442的编程,使其能够产生所需要的时钟信号。
ICS8442的性能参数如下:
输出信号频率范围为31.25~700MHz;晶振频率范围为10~25MHz;VCO频率范围为250~700MHz;ICS8442是LVDS逻辑电平,具有极低的相位噪声,这种特性使它非常适合用来为吉比特以太网或同步光纤网提供时钟信号。
ICS8442的内部结构图3所示。ICS8442内部有一个完整的PLL锁相环,其VCO的输出频率范围在250~700MHz之间,倍频系数是由M决定的,M的取值范围在10~28之间。VCO的输出频率为:
ICS8442最终的输出结果还要经过一个分频器N,最终输出结果的频率和晶振输入频率的关系式为:
中:N是一个2位的寄存器,其对应的取值如表1所示。
对ICS8442时钟芯片的操作主要是对寄存器M,N的写操作。ICS8442支持并行写操作和
- 在采用FPGA设计DSP系统中仿真的重要性 (06-21)
- 基于 DSP Builder的FIR滤波器的设计与实现(06-21)
- 基于FPGA的快速并行FFT及其在空间太阳望远镜图像锁定系统中的应用(06-21)
- 3DES算法的FPGA高速实现(06-21)
- 用FPGA实现FFT算法(06-21)
- FPGA的DSP性能揭秘(06-16)