基于 DSP声音采集系统的硬件设计过程和方法
TLC320AD50C中的可选项和电路配置可以通过串行口进行编程,该芯片对掉电、复位、信号采样率、串行时钟率、增益控制、通信协议、测试模式等可通过串行口进行编程和电路配置。具体连接如图 3:
片外复位电路提供上电复位,晶振电路可提供 10MHz的主时钟频率,数据采样频率和其他时钟信号均由此频率分配。5402与 AD50C之间的通信格式为主串行通信格式:接收和发送转换信号。
3.4 存储采集到声音信号后,一个很重要的环节就是声音信号的存储,本系统中我们采用的是SST公司的 FLASH存储器: SST39VF400A。该器件存储容量为 4 MB,采用 3.3 V单电源供电,对各个子模块的读写和擦除,可通过一些特殊的命令字序列来实现且无需额外提供高电压。在此设计中我们利用 DSP编程实现对该存储器的读写操作。
DSP主要通过外部存储器接口 (EMIF)访问片外存储器。它不仅具有很强的接口能力(可以和各种存储器直接接口),而且具有很高的数据吞吐能力。 5402与 SST39VF400的接口电路设计如图 1所示。该电路主要通过 DSP的相关输出管脚来控制 FLASH的擦除和读写。其中,A0~A19为地址线,DQ0~DQ15为数据线,OE和 WE分别为输出使能和写使能, CE1为片使能。
声音信号经过 AD转换器以后传输给 DSP,由 DSP的 PS和 DS引脚通过逻辑开关来分别控制 flash和 sram的使能端,由 DSP的 RW和 MSTRB控制位通过逻辑电路分别控制读和写。
在本设计中,SRAM使用的是 GS1117:64K×16的 1MB异步静态随机存储器。 GS71116是一个由高速的互补性金属氧化物半导体晶体管( CMOS)组成的静态随机存储器,不需要外部时钟或时间频闪观测器。 3.3V的操作电压,所有的输入输出均兼容晶体管逻辑电路(TTL)。它的快速通道时间小于 15ns,操作电流小于 100mA。
3.5 USB
PDIUSBD12是一款带并行总线的 USB 接口器件,它符合通用串行总线 USB 1.1 版规范,集成了 SIE、FIFO、存储器收发器以及电压调整器等,可与任何外部微控制器或微处理器实现高速并行接口 2M字节/秒,且在批量模式和同步模式下均可实现 1M字节/秒的数据传输速率,可通过软件控制与 USB 的连接,采用 GoodLink技术的连接指示器 ,在通讯时使 LED 闪烁,具有可编程的时钟频率输出,内部上电复位和低电压复位电路,为双电源操作,在 3.3±0.3V或扩展的 5V电源下均可使用,可实现多中断模式的批量和同步传输。连接图如图 4:
3.6 JTAG
JTAG是 joint test action group的简称,是用来调试 DSP的仿真部分,其连接部分要和仿真器上的引脚一致。TI公司的DSP5000系列专门预留有JTAG管脚,共14个, 4,8,10,12引脚均接地,6引脚悬空,5接高平电压3.3V,所有的仿真引脚均使用 IEEE1149.1标准,其余的引脚含义为:1、TMS:输入引脚,选择测试方式;2、TRST:输入引脚,测试复位;3、TDI:输入引脚,测试数据输入;7、TDO:输出引脚,在 TCK的下降沿时输出数据,其余时间呈高阻态;9、TCK_RET:输入引脚,在板子与仿真器的连接电缆不小于 6英寸的时候,接法与 TCK相同,大于 6英寸的时候,需另加驱动;11、TCK:输入引脚,测试时钟,一般为占空比为50%的固有时钟信号;13、EMU0:仿真中断引脚0,可用作输入或输出;14、EMU1:仿真中断引脚1,可用作输入或输出,当 TRST为低电平、EMU0为高电平时,EMU1为低电平,所有输出禁止。
4结论
通过这个声音采集系统,我们可以把无形的声音信号转化为图形进行处理,可以观察它的波形特点进行研究、工业生产等等。而在设计其他的 DSP应用系统接口电路时,要根据具体情况综合考虑性能指标、器件选取、外围电路设计等方面,仔细选取器件,精心合理布局,才能达到理想的设计效果。
本文作者创新点:根据硬件电路的设计逻辑给出了画 PCB的过程,介绍了基于 DSP声音采集系统的硬件设计过程和方法。
设计 过程 方法 硬件 系统 DSP 声音 采集 基于 相关文章:
- 基于FPGA的DSP设计方法(08-26)
- 电力电子装置控制系统的DSP设计方案(04-08)
- 基于DSP Builder的VGA接口设计(04-10)
- 基于DSP和USB的高速数据采集与处理系统设计(05-01)
- 数字信号处理(DSP)应用系统中的低功耗设计(05-02)
- 基于DSP的嵌入式显微图像处理系统的设计(06-28)