串行RapidIO: 高性能嵌入式互连技术
图6 TMS320C6455集成了1x/4xSRIO接口 发送时,逻辑层和传输层将组好的包经过CRC编码后被送到物理层的FIFO中,“8b/10b编码”模块将每8位数据编码成10位数据,“并/串转换”模块将10位并行数据转换成串行位,发送模块把数字位转换成差分交流耦合信号在信号线上发送出去。接收的过程则正好相反。 串行RapidIO在无线基础设施上的应用 以无线基站为例,在SRIO出现之前,无线基站的基带处理的典型框图如图7所示。 图7 传统无线基站基带处理框图 使用SRIO则可有效的解决这些问题,大大提高无线基站的互连性能。图8显示了一种无线基站基带互连框图。在这里,SRIO实现了大部分器件之间的互连,甚至可支持DSP进行直接背板传输。 图8 SRIO提高无线基站互连性能 图9 SRIO交换为无线基站基带处理提供更大的灵活性 综上所述,对嵌入式系统尤其是无线基础设施,串行RapidIO是最佳的互连技术。高达10Gb/s的带宽、低时延和低软件复杂度满足了飞速发展的通信技术对性能的苛刻需求;串行差分模拟信号技术满足了系统对引脚数量的限制,及对背板传输的需求;灵活的点对点对等互连、交换互连,和可选的 1.25G/ 2.5G/3.125G三种速度能满足多种不同应用的需求。
无线基础设施如基站、媒体网关等,是典型的高性能嵌入式通信系统,它们对互连的带宽、时延、复杂度、灵活性和可靠性都有非常高的要求。而串行RapidIO正是满足这些要求的最佳选择。
在传统的基站中,DSP与ASIC或FPGA之间的互连一般用外部存储器接口(EMIF);DSP之间或DSP与主机之间一般用HPI或PCI互连。它们的主要缺点是:带宽小、信号线多、主从模式接口、不支持对等传输。另外,DSP不能直接进行背板传输。
通过SRIO交换器件互连可以进一步提高基带处理的灵活性,图9显示了一种基带SRIO交换互连的框图。这种互连有利于实现先进的基带处理资源池架构,数据可被送到任何一个通过SRIO交换器互连的处理器中,从而达到各个处理器的负载均衡,更加有效的利用系统的整体处理能力。
- 基于FPGA实现DSP与RapidIO网络互联(04-24)
- 应用FPGA实现DSP与RapidIO网络互联(02-22)
- 串行RapidIO连接功能增强DSP协处理能力(04-30)
- 在基带处理中使用串行RapidIO协议进行DSP互连(07-23)
- CPS1432交换芯片的串行RapidIO互连技术(09-12)
- 多核DSP系统高速传输核心的IP设计(04-22)