基于ARM9的转辙机缺口监测图像采集模块设计
摘要 转辙机是铁路上负责道岔的转换、锁闭、监督功能的电气设备,它的监测对维护列车安全运行具有重要意义。现有道岔转换设备缺口监测系统存在检测方式落后、不直观、高误警等情况。针对上述情况文中提出了一种在线视频监控自动处理系统,其中转辙机内监控系统能对缺口图像的动态实时情况进行拍照和上传;工作室终端电脑能对道岔转辙机内表示杆缺口偏移量的图像进行识别、自动监测和超值报警,并介绍了图像采集模块的设计与实现。
关键词 转辙机;缺口监测;Linux ARM9
转辙机缺口监测问题一直是铁路信号系统特别是信号维修部门关注的热点。随着铁路高速、高密度行车区段的不断增加,为了确保行车安全,对行车道岔运行质量与状态稳定性监测无为重要。
1 系统技术指标
主要技术指标:(1)缺口图像分辨率0.01 mm。(2)缺口偏移检测精度0.1 mm。(3)信号传输距离≤2.5 km(1.0 mm线径)。(4)动态图像传输码流100~250 kbit·s-1。
2 图像采集模块设计原理
图像采集使用微型摄像头,图像分辨率是指图像中每单位长度所包含的像素或点的数目,常以像素/英寸(ppi)为单位来表示。对电动转辙机(S700K、ZD6)正面缺口在4~6 mm,用普通的30万像素摄像头,精度可达6/640=0.01 mm。图像数据量大小=图像中的像素总数×图像深度÷1 024(单位为kB)。30万像素摄像头捕捉到640×480的画面,二值图像深度为1,灰度图像深度为8或者彩色图像深度为24,普通灰度图像大小为2400kB。
JPEG是由ISO和CCITT 1986年成立了“联合图片专家组”(Joint Photographic Experts Group)所制定的静止灰度或彩色图像的压缩标准。JPEG标准定义了3种编码系统:(1)基于DCT的有损编码基本系统,可以适合大多数压缩场合。(2)基于分层递增模式的扩展、增强编码系统,用于高压缩比、高精度或渐进重建应用场合。(3)基于预测编码中DPCM方法的无损系统,用于无失真应用的场合。
图像应用系统要与JPEG兼容,必须支持JPEG基本系统,可以通过修改其文件格式、图像分辨率或彩色空间模型应用于不同场合。在不降低图像视觉质量的基础上JPEG标准可以将图像压缩到1/10~1/50,这样一帧图像的大小就可以压缩到48 kB,根据需要还可以压缩为6 kB的二值图像,满足缺口检测的要求。
在基本系统中,输入和输出数据的精度为8 bit,量化DTC值的精度为11 bit。压缩过程由3个步骤组成:(1)DCT计算。(2)量化。(3)用熵编码器进行变长码赋值。具体过程如下:先把图像分割成一系列8×8的子块,然后按从左向右从上到下的次序处理。基本系统的编码器如图2所示。
Video4Linux(V4L)是Linux的影像串流系统与嵌入式影像系统的基础。Video4Linux是Linux Kemel里支持影像设备的一组APIs,配合适当的视频采集卡与驱动程序,Video4Linux可以实现影像图像采集,它支持图像的JPEG压缩。Video4Linux分为2层式架构,上层为Video4Linux驱动程序本身,下层架构则是影像设备的驱动程序。实验中使用了V4L的上层驱动程序,即V4L所提供给程序开发人员的APIs。通过使用Video 4Linux的API函数从视频设备中读取图像数据,然后将这些数据写入Frame Buffer,使摄像头采集到的图像在液晶屏中显示出来。
3 图像采集硬件设计
在ARM9系统中通过USB接口连接USB摄像头对图像进行采集,实现转辙机缺口监测的图像采集。ARM9核心板:处理器采用ARM920T处理器的S3C2410A,工作频率203 MHz;SDRAM是64 MB;NANDFlash:64 MB;NORFlash:2 MB;USB接口:AU9254A21支持USB1.1协议。
USB采集电路的原理框图如图3所示。
USB主机芯片采用AU9254A21,它是单片的四端口USB控制芯片,这里扩展了4个USB接口。它的上端接USB控制系统,下端可接USB设备。
4 图像采集软件实现
在Linux系统中,通过使用Video4Linux的API函数,从视频设备中读取图像数据,然后将这些数据写入系统临时文件为后续的功能实现奠定基础。
采集程序实现过程:一个嵌入式Linux系统从软件的角度看通常分为4个层次:Bootloader、Linux内核、文件系统和用户应用程序,如图4所示。
4.1 移植Bootloader
USB摄像头的采集应用程序是建立在Linux系统上,首先配置适合系统的Bootloader,Linux内核在RAM中运行,这就需要Linux的Bootloa der将整个内核复制到RAM中。系统中Bootloader是运行在NORFlash中,它的主要作用是:将Linux内核文件、根文件系统文件、Linux启动参数文件复制到SDRAM中,并跳至RAM中Linux内核的首地址,运行Linux。各文件在RAM中存放的空间示意图,如图5所示。
4.2 编译下载内核
采集 模块 设计 图像 监测 ARM9 缺口 基于 相关文章:
- 基于Linux的便携式RFID信息采集处理系统 (07-03)
- 一种基FPGA和DSP的高性能PCI数据采集处理卡设计(08-26)
- 基于LabVIEW的USB实时数据采集处理系统的实现(03-26)
- 基于DSP和USB的高速数据采集与处理系统设计(05-01)
- 基于DSP的图象采集与处理系统的设计(06-15)
- 基于DSP的信号采集处理系统(07-21)