用于CMOS图像传感器的流水线ADC设计及其成像验证
2.4 时钟控制电路设计
流水线ADC对于时序要求比较高,为了确保流水线ADC正常工作,要求前后两级不同时工作在采样状态和保持状态,至少需要一对两相不交叠时钟。文中设计的时钟信号电路如图6所示。相比一般的采用器件延时来设计时钟控制电路,本文采用了在电路引入电容的方式来确定时钟延时,尽管这样做会在版图上多占用了一些面积,但是其好处是设计的两相不交叠时钟非常稳定,时钟可以根据电容值选取的大小而更为合理的错开。
3 芯片版图
该芯片使用0.5μm标准CMOS工艺进行流片,版图的设计综合考虑了混合信号电路布局、匹配设计和抗干扰设计等。布局采用数模分离,数字电路加保护环;匹配设计采用了共心对称设计、比例单元设计和添加哑元元件等技术。芯片版图如图7所示,带PAD的整体芯片面积为3.55 mm@2.9 mm,其中上部分为数字位对齐和数字校准电路,中部为各级流水线,右侧为时钟产生电路,下部为信号输入和其他电路。
4 成像系统及其成像结果
4.1 成像系统硬件组成
低噪声、高帧频的CMOS图像传感器成像,除了对PCB测试板的设计要求较高外,也对测试系统的构成也提出了较高的要求。本成像系统的电学硬件系统框图如图8所示。该电学硬件系统的基本工作原理是:
1)在PCB板上用基于CPLD设计的时钟波形来控制板上的CMOS图像传感器芯片和ADC芯片协同工作,并在此过程中生成帧同步信号和ADC时钟信号交予数字采集卡作为采集卡的外触发和外时钟信号。
2)在ADC芯片将CMOS图像传感器产生的模拟信号进行模数转换后,其数字信号经缓冲芯片缓冲输出至数字采集卡。
3)数字采集卡在帧同步信号控制下进行重复触发采样,在采集卡收集到一定数据后将采集到的数据传送到主机中,然后用成像软件进行分析,给出动态的成像图片。
4.2 成像系统软件设计
本测试系统软件采用Labview编程,Labview是一种图形化的编程语言的开发环境,广泛地被工业界、学术界和研究实验室所接受,视为一个标准的数据采集和仪器控制软件。
本系统中利用Labview的虚拟仪器(virtual instrument)实现对数据采集卡的数据采样控制、对采集到的数据进行信号处理以及动态成像,图9为成像软件的界面图,其工作模式和原理是:
1)在控制数字采集卡的程序中,将始终和触发设置为外时钟采样以及外触发重复触发采样模式,以实现成像信号帧同步和保证采集卡采样与ADC输出的同步。
2)在将采集到的数据转化为U16数字格式数组后,对这些信号进行灰度值处理,程序设计了两种灰度调节模式:固定的灰度转换和灰度自动调节,此外程序还设计了可选的反色、图像翻转、图像放大等功能。
3)在数据进行信号处理后,完成对采集数据的二维灰度值成像,这些信号处理和成像程序都置于while循环中,因此可根据延时设置成像刷新的帧频,实现动态成像。
4.3 成像结果
用本文设计的ADC对模拟输出的CMOS图像传感器进行模数转换后,基于自主设计的成像系统,进行了实时成像实验,成像结果如图10所示,可以看出,画面清晰,层次感分明。
5 结束语
文中设计了一种可应用于低噪声CMOS图像传感器芯片级模数转换的12bit、10Msps流水线ADC,并基于0.5μm标准CMOS工艺进行了流片。最后在PCB板级电路上用该流水线型ADC完成了CMOS图像传感器的模数转换,并基于Labview和数字采集卡系统实现了CMOS图像传感器的成
像,成像结果表明,该ADC可满足低噪声CMOS图像传感器芯片级模数转换器的要求,下一步可将CMOS图像传感器和该ADC合并设计在一个芯片上进行流片。
流水线ADC CMOS 图像传感器 Labview 相关文章:
- DSP内嵌PLL中的CMOS压控环形振荡器设计(03-02)
- 基于DSP内嵌PLL中的CMOS压控环形振荡器设计(05-05)
- 宽动态监控摄像机CCD/CMOS-DSP解析 (07-24)
- DSP与单片机通讯方式解析方案 (08-29)
- 基于ATmega162的智能仪器设计(08-18)
- 基于STC单片机的太阳能热水器智能节水控制系统设计(06-02)