整流器数字控制与驱动技术介绍
1引言
在主PWM控制器位于初级侧的低DC输出电压隔离型开关电源(SMPS)中,通常采用专门设计的MOSFET作为同步整流器(SR)。作为SR使用的MOSFET具有非常小的导通损耗,有助于提高系统效率。
在初级侧控制的隔离SMPS拓扑中,由于在隔离变压器次级侧没有PWM控制信号,故欲产生适当的SR控制信号显得比较困难。但是,可以从变压器次级输出获得有关数据。由于电路寄生元件的存在,同步信号在从隔离变压器输出分离(withdrawn)时,相对于初级PWM信号会发生延迟,并且在不连续导通模式(DCM)状态会出现振荡。因此,为SR提供驱动的控制电路必须能避免发生错误的操作。
在初级侧控制的隔离拓扑中,为驱动SR需要适当的控制电路,以处理同步时钟信号(clock)从隔离变压器的输出移开,解决驱动信号相对于时钟输入的定时等问题。若对SR控制不当,在两个器件之间会发生“跨越导通”(crossconduction)。同时,在隔离拓扑的次级由于相对于初级主开关(MOSFET)驱动信号的延迟,会在相关元件之间形成短路,发生“贯通”(shootthrough)现象。产生贯通的机理,具体取决于变换器拓扑结构。
2同步整流器的数字控制方法
在用作产生SR驱动信号的方案中,首推数字控制方法。
21系统基本结构
SR数字控制系统一般由振荡器(OSC)、限定状态机构(FiniteStatesMachine,简写FSM)、两个耦合的向上/向下(UP/DOWN)计数器和两个控制输出逻辑等单元电路所组成,系统框图如图1所示。
控制电路有3个输入和2个输出。其中,2个输出为隔离变换器次级2只MOSFETs提供互补驱动信号,3个输入包括1个时钟信号和2个输出的期望(anticipation)时间设定。不论是接通还是关断,2个输出OUT1和OUT2没有任何交迭。开关频率为fs的方波信号出现在时钟输入端,期望的定时通过外部有关
图1同步整流器数字控制器组成方框图
图2OUT2预期时间产生波形
图4在TS1>TS2时OUT2及相关波形
图3OUT1预期时间产生波形
输入设定。2个计数器工作方式及作用不同:DOWN计数器用于处理输出截止,UP计数器连续获取OUT2开关周期期间或OUT1接通时间内的有关数据。控制系统根据前面周期内存储的有关信息,在开关周期截止期内的输出被预先处理。采用这种控制方法,开关周期和接通时间(tON)被逐周连续监测。
22稳定条件
在稳态条件(固定频率和固定占空比)下,两个开关周期中与输出OUT2相关的波形如图2所示。
在第1个开关周期(TS1)内,在时钟输入的上升沿上,两个(UP/DOWN)计数器中第1个开始计算内部时钟(CK)脉冲。在接下来的一个时钟输入的上升沿(TS1结束)上,计数器停止计算。计算过的脉冲数目(n2)把开关周期的持续时间考虑在内。所存储的数据,在下一个开关周期中被利用。
在第2个开关周期中,在内部时钟输入的上升沿上,第1个计数器由大到小计算(countsDOWN)内部时钟脉冲,并且在计算到(n2-x2)个脉冲时终止。第2个计数器计算新的尚未计算的内部时钟脉冲,并适时修正开关周期(TS)期间的有关数据。OUT2超前截止总量为X2·TI(TI为内部时钟脉冲周期),并通过OUT2预期时间输入设定。计数器UP或DOWN在每个周期内的功能,相对于先前周期被交换。
为预期关断OUT1,另外两个UP/DOWN计数器将考虑计及接通时间(tON)期间的有关数据,相关波形如图3所示。
在第1个开关周期内,第1个计数器在时钟输入上升沿上开始计数,并且在时钟输入下降沿上停止。其间计算的脉冲数量为n1,只计及tON时间之内的脉冲数。
在第2个开关周期内,第1个计数器递减计数,在计算到n1-x1时停止。关断OUT1的超前时间总计为x1·Ti,并由OUT1预期时间输入设定。第2个计数器向上(由小到大)计算时钟输入上升沿与下降沿之间的脉冲数目。
23变化条件
231开关频率发生变化
当开关频率(fs)发生变化时,对于输出OUT2而言,可能存在三种情况:
1)TS1>TS2当第2个开关周期TS2小于先前周期TS1时,OUT2的截止发生延迟,相对于时钟输入没有超前,而是随时钟输入的前沿强迫关断。图4示出了该条件下的相关波形。
2)TS1
元器件应用
图5在TS1TS2时OUT2及相关波形
关波形如图5所示。在此情况下,OUT2发生提前关断。MOSFET体二极管的导通时间恰为一个周期,效率损失非常小。
3)TS1232占空比发生变化
对于输出OUT1,当接通时间tON发生变化时,可能会出现两种不同的情况:
1)tON1>tON2当第1个开关周期的接通时间tON1大于第2个开关周期的接通时间tON2时,时钟输入、内部时钟和输出OUT1波形定时图如图7所示。在此情况下,OUT1的关断被延时,相对于时钟输入没有提前,总是在时
- 用DSP实现高功率因数PWM整流器的控制(01-23)
- 三相PWM整流器启动冲击的抑制(09-12)
- 高功率因数PWM整流器的控制实现(09-07)
- 基于DSP控制的电压型PWM整流器(04-26)
- 采用空间矢量控制技术的三相电压型整流器设计(04-24)
- 基于DSP储能飞轮用无刷直流电机的数字控制系统(06-08)