微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 几种总线通信介质访问控制方式

几种总线通信介质访问控制方式

时间:10-29 来源:互联网 点击:
 1、 前言

现场总线是应用在生产现场,在微机化测量控制设备之间实现双向串行多节点数字通信的系统,也被称为开放式、数字化、多点通信的底层控制网络。现场总线控制系统既是一个开放通信网络,又是一种全分布控制系统。自80年代以来,有几种现场总线技术已逐渐形成,在一些特定的应用领域显示了各自的优势。
  
对用户而言,如何选择适合自己需要的现场总线,来满足工业控制中的实时要求。这需要了解每种现场总线的特点,尤其是数据链路层的通信介质访问控制方式。

按照对时间确定性的支持,现场总线通信介质访问控制方式主要分为两大类:一类采用事件触发方式,它不直接支持时间确定性,多数采用随机载波监听方式(CSMA),具有代表性的有CAN和LON等;另一类采用时间触发方式,它直接支持时间确定性,
  
通常采用令牌方式,它又可以进一步分为:(1)集中式令牌,具有代表性的有WorldFIP和FF等;(2)分布式令牌,具有代表性的有PROFFBUS等;(3)虚拟令牌,具有代表性的有P-NET等。
  
为此,本文针对目前比较流行的,且通信介质访问控制方式具有代表性的4种现场总线——LON、CAN、PBOFIBUS和FF进行简单的介绍,特别是对其通信介质访问控制方式进行了较详细的描述。

2、 LON(LocalE Operation Networks)

美国Echelon公司于1991年推出的局部操作网络,在组建分布式监控网络方面具有优越性。LON技术适合于低层次工业网络,在住宅、楼宇管理、暖通、水处理、食品加工、机器控制与监视等领域被广泛接受。
  
LONWORKS采用的LonTalk通信协议遵循ISO/OSI的全部7层模型。LonTalk协议被封装在称之为Neuron神经芯片中得以实现。Neuron神经芯片是IONWORKS的核心,内含3个8位CPC,分别为介质访问控制处理器,网络处理器和应用处理器。可见,Neuon神经芯片不仅作为LON总线的通信处理器,也作为采集和控制的通用处理器。
  
LON支持多种拓扑结构,如总线型、星型、环型、混合型等,和多种传输介质,如双绞线、电力线、无线电波、红外线、光纤、同轴电缆和电源线等。可以根据不同的现场环境选择不同的收发器和介质。采用双绞线时,通信速率为78kbps/2700m/每段以节点,1.25Mbps/130m/每段64个节点。Motomla已开发出IS-78本安物理通道,使LON网络可以延伸到危险区域。

LON的通信介质访问控制方式为带预测P-坚持CSMA。当节点有信息要发送而试图占用通道时,首先在一个固定的周期Beta 1检测通道是否处于网络空闲。为了支持优先级,还要增加优先级时间片,优先级越高的所加的时间片越少。随后再根据网络积压参数BL产生一个随机等待时间片W’,W’为0到W之间的随机数,W=BL*16。当延时结束时,网络仍空闻,节点以概率p=1/W发送报文。此种方式在负载较轻时使介质访问延迟最小化,而在负载较重时使冲突最小化,但不能消除冲突。图2-1为LON的优先级带预测P-坚持CSMA概念示意图。
  
LON有完整的7层协议,具备了局域网的基本功能,与异型网的兼容性比现存的任何现场总线都好。它还提供了与LAN的接口,从而实现二者的有机结合。同时,LON属于网络型系统,不适合于有大量数据需要采集,进行频繁处理的快速工业控制系统。

LON通过具有通信与控制功能的Neuron神经芯片、收发器、电源、传感器和控制设备构成的网络节点,采用专用的编程工具Neuron C,利用所提供的开发工具:LonBuilder、NodeBuilder和LVS技术,可以快速、方便地开发节点和联网。
 


总之,当有大量的短消息需要通信应用时,LON是一个普及、低成本的总线系统。

3、 CAN( Controller Area Network)

德国 BOSCH公司于1991年推出,用于汽车内部测量和执行部件之间的数据通信。主要应用于离散控制领域中的过程监测和控制,特别是工业自动化的低层监控,解决控制与测试之间的可靠和实时数据交换。
  
CAN采用了ISO/OSI的3层模型:物理层、数据链路层和应用层。
  
CAN支持的拓扑结构为总线型。传输介质为双绞线、同轴电缆和光纤等。采用双绞线通信时,速率为1Mbps/40m,50kbps/10km,节点数可达110个。
  
CAN的通信介质访问方式为带优先级的 CS-MA/CA。采用多主竞争式结构:网络上任意节点均可以在任意时刻主动地向网络上其它节点发送信息,而不分主从,即当发现总线空闲时,各个节点都有权使用网络。在发生冲突时,采用非破坏性总线优先仲裁技术:当几个节点同时向网络发送信息时,运用逐位仲裁规则,借助帧中开始部分的标识符,优先级低的节点主动停止发送数据,而优先级高的节点可不受影响地继续发送信息,从而有效地避免了总线冲突,使信息和时间均无损失。例如,规定0的优先级高,在节点发送信息时,CAH总线做与运算。每个节点都是边发送信息边检测网络状态,当某一个节点发送1而检测到0时,此节点知道有更高优先级的信息在发送,它就停止发送信息,直到再一次检测到网络空闲。图3-1为A、B、C、D4个节点同时发送信息,最后优先级高的节点D有权发送信息,其它节点主动停止发送数据。  CAN的传输信号采用短帧结构(有效数据最多为8个字节),和带优先级的CSMA/CA的通信介质访问方式,对高优先级的通信请求来说,在1Mbps的通信速率时,最长的等待时间为0.15ms,完全可以满足现场控制的实时性要求。
  
CAN突出的差错检验机理,如5种错误检测、出错标定和故障界定;CAN传输信号为短帧结构,因而传输时间短,受干扰概率低。这些保证了出错率极低,剩余错误概率为报文出错率的4.7x10-11。另外,CAN节点在严重错误的情况下,具有自动关闭输出的功能,以使总线上其它节点的操作不受其影响。可见,CAN具有高可靠性。
  
CAN的通信协议主要由CAN控制器完成。CAN控制器主要由实现CAN总线通信协议部分和微控制器接口部分电路组成。通过简单的连接即可完成CAN总线协议的物理层和数据链路层的所有功能,应用层功能由微控制器完成。CAN总线上的节点既可以是基于微控制器的智能节点,也可以是具有CAN接口的I/O器件。  

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top