微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 单芯片无刷直流散热微电机驱动电路综述

单芯片无刷直流散热微电机驱动电路综述

时间:03-05 来源:互联网 点击:

电压高、驱动功率大,因此功率管多采用外置方式实现。代表解决方案有LB11967和LB11867。该类方案的特点是驱动功率大、驱动电压高、功率驱动管外置、外部线路复杂。图6以LB11 867为例来阐述该类解决方案。在该应用线路中有几点需要说明:

①应用线路中A框线路设定电机PWM调速曲线的斜率,B框控制电机的最低转速;②电阻Rsense用于设定流过功率管的最大驱动电流,Rse nse越大,功率驱动管能流过的电流越小;③电阻R1,R2取值越大,外置功率管栅源电压越大,导通电阻越小(不超过栅源耐压值),发热越小,驱动效率也越高;④C5设定软启动时间。C5越大启动时间越长,启动瞬间电流越小。但C5不宜过大,过大时散热电机有可能还未正常启动就直接进入锁定状态,因此C5取值应根据电机特性优化。

图7详细分析了软启动实现原理:驱动芯片上电或散热电机锁定时,S-S引脚(接C5电容)会强行拉高至比CPWM引脚三角波电压高,当锁定保护和上电动作完成后,S-S引脚电压会被强行拉低至CPWM三角波电压高点,然后释放。由于S-S引脚外接有C5,在芯片内部电流沉作用下缓慢放电,放电斜率由C5和S-S引脚电流沉电流(规格书上标注为0.5μA)决定。

3 结论

随着科技的飞速发展,电子产品呈现轻薄化、小型化的发展趋势,单芯片无刷直流散热微电机驱动电路发展新方向主要有:①内置定位传感器驱动电路。采用标准半导体工艺,单芯片集成定位传感器。如能实现上述设计,将大大减少驱动芯片引脚,减少外围器件,缩短系统工程师设计周期,同时还能减少电机驱动电路板面积,有利于电机小型化和轻薄化;②单芯片精确设定电机转速。当前无刷直流散热微电机驱动芯片多采用PWM方式控制电机转速,且多为开环控制方式。由于电机转速不会随PWM占空比完全线性变化,因此很难实现转速精准控制。当前为实现转速精确控制需使用微控单元,这大大增加了成本,因此采用闭环PWM控制方式实现电机转速的精确控制必将是未来的发展方向;③低电源电压驱动芯片。当前系统复杂程度越来越高,为降低系统功耗,系统供电电压越来越低,因此低电压工作如1.5 V,甚至1.2 V电机驱动芯片会是后续发展的又一方向。为实现低电压驱动,除设计时采用低电压驱动电路架构外,还需选用低阈值电压半导体工艺进行电路整合。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top