微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > μC/OS-II的内核结构

μC/OS-II的内核结构

时间:10-08 来源:互联网 点击:

OSTimTickHook()开始,这个外连函数可以将时钟节拍函数OSTimtick()予以扩展[L3.2(1)]。笔者决定首先调用OSTimTickHook()是打算在时钟节拍中断服务一开始就给用户一个可以做点儿什么的机会,因为用户可能会有一些时间要求苛刻的工作要做。OSTimtick()中量大的工作是给每个用户任务控制块OS_TCB中的时间延时项OSTCBDly减1(如果该项不为零的话)。OSTimTick()从OSTCBList开始,沿着OS_TCB链表做,一直做到空闲任务[L3.21(3)]。当某任务的任务控制块中的时间延时项OSTCBDly减到了零,这个任务就进入了就绪态[L3.21(5)]。而确切被任务挂起的函数OSTaskSuspend()挂起的任务则不会进入就绪态[L3.21(4)]。OSTimTick()的执行时间直接与应用程序中建立了多少个任务成正比。

程序清单L3.21时钟节拍函数OSTimtick()的一个节拍服务

voidOSTimeTick(void)

{

OS_TCB*ptcb;

OSTimeTickHook();(1)

ptcb=OSTCBList;(2)

while(ptcb->OSTCBPrio!=OS_IDLE_PRIO){(3)

OS_ENTER_CRITICAL();

if(ptcb->OSTCBDly!=0){

if(--ptcb->OSTCBDly==0){

if(!(ptcb->OSTCBStatOS_STAT_SUSPEND)){(4)

OSRdyGrp|=ptcb->OSTCBBitY;(5)

OSRdyTbl[ptcb->OSTCBY]|=ptcb->OSTCBBitX;

}else{

ptcb->OSTCBDly=1;

}

}

}

ptcb=ptcb->OSTCBNext;

OS_EXIT_CRITICAL();

}

OS_ENTER_CRITICAL();(6)

OSTime++; (7)

OS_EXIT_CRITICAL();

}

OSTimeTick()还通过调用OSTime()[L3.21(7)]累加从开机以来的时间,用的是一个无符号32位变量。注意,在给OSTime加1之前使用了关中断,因为多数微处理器给32位数加1的操作都得使用多条指令。

中断服务子程序似乎就得写这么长,如果用户不喜欢将中断服务程序写这么长,可以从任务级调用OSTimeTick(),如程序清单L3.22所示。要想这么做,得建立一个高于应用程序中所有其它任务优先级的任务。时钟节拍中断服务子程序利用信号量或邮箱发信号给这个高优先级的任务。

程序清单L3.22时钟节拍任务TickTask()作时钟节拍服务.

voidTickTask(void*pdata)

{

pdata=pdata;

for(;;){

OSMboxPend(...);/* 等待从时钟节拍中断服务程序发来的信号 */

OSTimeTick();

}

}

用户当然需要先建立一个邮箱(初始化成NULL)用于发信号给上述任何告知时钟节拍中断已经发生了(程序清单L3.23)。

程序清单L3.23时钟节拍中断服务函数OSTickISR()做节拍服务。

voidOSTickISR(void)

{

保存处理器寄存器的值;

调用OSIntEnter()或是将OSIntNesting加1;

发送一个‘空’消息(例如, (void*)1)到时钟节拍的邮箱;

调用OSIntExit();

恢复处理器寄存器的值;

执行中断返回指令;

}

3.11 μC/OS-Ⅱ初始化

在调用μC/OS-Ⅱ的任何其它服务之前,μC/OS-Ⅱ要求用户首先调用系统初始化函数OSIint()。OSIint()初始化μC/OS-Ⅱ所有的变量和数据结构(见OS_CORE.C)。

OSInit()建立空闲任务idle task,这个任务总是处于就绪态的。空闲任务OSTaskIdle()的优先级总是设成最低,即OS_LOWEST_PRIO。如果统计任务允许OS_TASK_STAT_EN和任务建立扩展允许都设为1,则OSInit()还得建立统计任务OSTaskStat()并且让其进入就绪态。OSTaskStat的优先级总是设为OS_LOWEST_PRIO-1。

图F3.7表示调用OSInit()之后,一些μC/OS-Ⅱ变量和数据结构之间的关系。其解释是基于以下假设的:

z 在文件OS_CFG.H中,OS_TASK_STAT_EN是设为1的。

z 在文件OS_CFG.H中,OS_LOWEST_PRIO是设为63的。

z 在文件OS_CFG.H中,最多任务数OS_MAX_TASKS是设成大于2的。

以上两个任务的任务控制块(OS_TCBs)是用双向链表链接在一起的。OSTCBList指向这个链表的起始处。当建立一个任务时,这个任务总是被放在这个链表的起始处。换句话说,OSTCBList总是指向最后建立的那个任务。链的终点指向空字符NULL(也就是零)。

因为这两个任务都处在就绪态,在就绪任务表OSRdyTbl[]中的相应位是设为1的。还有,因为这两个任务的相应位是在OSRdyTbl[]的同一行上,即属同一组,故OSRdyGrp中只有1位是设为1的。

μC/OS-Ⅱ还初始化了4个空数据结构缓冲区,如图F3.8所示。每个缓冲区都是单向链

表,允许μC/OS-Ⅱ从缓冲区中迅速得到或释放一个缓冲区中的元素。注意,空任务控制块

在空缓冲区中的数目取决于最多任务数OS_MAX_TASKS,这个最多任务数是在OS_CFG.H文件

中定义的。μC/OS-Ⅱ自动安排总的系统任务数OS_N_SYS_TASKS(见文件μC/OS-Ⅱ.H)。控

制块OS_TCB的数目也就自动确定了。当然,包括足够的任务控制块分配给统计任务和空闲

任务。指向空事件表OSEventFreeList和空队列表OSFr

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top