微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 综合文库 > 石墨烯的制备方法及应用

石墨烯的制备方法及应用

时间:12-28 来源:mwrf 点击:

 \

图7 以石墨烯为阳极的有机发光二极管

(a)结构示意图,(b)电致发光光谱

4.2 石墨烯基太阳能电池

石墨烯在能量转换方面的应用是目前石墨烯研究中最活跃的方向之一。基于石墨烯与无机半导体、纳米线、有机小分子染料与聚合物等复合材料,在不同的器件结构中均展现了较好的光电转换特性50。现列举几个代表性的材料组合与器件结构,阐述如下:石墨烯作为一个二维结构的薄膜电极具有不少优点:导电特性与光学特性可通过层数变化、掺杂等进行调控,非常平整的表面有利于功能层的组装。作为一个有益的尝试,清华大学的研究人员,以石墨烯作阳极,在n-Si上了制备肖特基结太阳能电池,如图8所示。从图8的I-V曲线可看出,石墨烯-硅异质结构具有很好的整流特性,计算可得整流比在104~106。系统的研究表明,这种太阳能电池的开路电压为0.42~0.48V,短路电流为4~6.5mA,填充因子为45%~56%,功率效率为1.0%~1.7%。

 \

图8 石墨烯-硅太阳能电池结构示、器件照片及光电流-电压曲线.

4.3 石墨烯基纳米发电机

近年来,王中林教授研究组基于纳米结构ZnO的压电效应实现了纳米发电机,且它的性能不断得到提高51。人们可望借助于许多自然的运动(如微风吹拂、身体摆动)等实现对若干功能器件驱动。对于这样的应用需求,软性器件的设计与制备就成了人们关注的热点,而石墨烯的光电及机械特性则可很好地满足这些要求。韩国的研究人员在这方面报道了一些很有代表性的工作。

他们采用化学气相沉积技术制备了大面积的石墨烯,并通过掺杂等方法实现了电学特性(如功函数、电阻率等)的调控52。在此基础上,他们进一步将石墨烯用于纳米发电机的制备,基本过程如图9所示。首先在镀Ni的硅片衬底上采用CVD技术生长了面积达5.08cm(2in)的石墨烯,再将其剥离并转移到性的聚合物衬底上,形成一个电极,然后在石墨烯电极上用水热法生长定向排列的ZnO阵列,再覆盖一层石墨烯形成另一电极。这就构成了一个可完全卷曲的纳米发电机的原型器件。图10给出了这个纳米发电机输出电流的极性,并比较了卷曲前后的电流输出情况,可以看出这种可软性的纳米发电机在卷曲后仍具有很好的电流输出。

\

图9可完全卷曲的纳米发电机制备过程示意图.(a)镀Ni硅片上生长石墨烯;(b)石墨烯转移至柔性聚合物衬底;(c)生长ZnO纳米棒阵列;(d)与另

一层石墨烯集成

 \

图10 可完全卷曲的纳米发电机的输出特性.
(a) 发电机的输出极性与电流大小;(b)卷曲与非卷曲时的输出电流

5

在短短的几年间,石墨烯以其具有的优异性能及各种潜在的应用前景,得到快速发掘和开发. 与此同时,人们需要大量高质量、结构完整的石墨烯材料. 这就要求提高或进一步完善现有制备工艺的水平,探索新的制备路径. 微机械法显然不能满足未来工业化的要求,直接剥离法能制备高质量的石墨烯,但产率太低、耗时太长; 化学气相沉积法可以制备出大面积且性能优异的石墨烯薄膜材料,但现有的工艺不成熟以及成本较高都限制了其大规模应用,因此还需进一步探索、完善. 氧化还原法虽然能够以相对较低的成本制备出大量的石墨烯,但即使被强还原剂还原后,石墨烯的原始结构也并不能完全恢复(特别是经过共价修饰后的石墨烯),而使其电子结构及晶体的完整性均受到严重的破坏,一定程度上限制了其在某些领域(如精密的微电子领域)中的应用. 因此,如何大量、低成本制备出高质量的石墨烯材料仍是未来研究的一个重点. 此外,由于表面修饰能改善或丰富石墨烯的各种性能,也应该关注如何更好的修饰,特别是非共价修饰,进一步提高石墨烯各方面性能,促进其器件化、工业化、商品化的进程。

参考文献:
[1] 黄桂荣,陈建.石墨烯的合成与应用[J].炭素技术,2009,28(1):35-39.
[2] 石墨烯.http://baike.baidu.com/view/1744041.htm.
[3]《自然》:大规模生产低成本石墨烯已成可能[J],磨料磨具通讯,200(92):30-32.
[4] 冯卫东.IBM展示运行速度最快的石墨烯晶体管[J].现代物理知识,2010,2(21):27.
[5] 英法研制出超快锁模石墨烯激光器[J].光机电信息,2010(5):53-54.
[6] 代波,邵晓萍,等.新型碳材料——石墨烯的研究进展[J].材料导报,2010,24(2):17-21.
[7] 我国科学家率先实现基于石墨烯的各向异性刻蚀技术[J].传感器世界,2010(9):38-39.
[8] 国家纳米科学中心石墨烯纳米生物传感器研究取得突破[J].传感器世界,2010(4):40-41.
[9] 石墨烯纳米抗菌材料研究获进展[J].材料导报,2010,24(9):24.
[10] 徐秀娟,秦金贵,李振. 石墨烯研究进展. 化学进展,2009,21(12):2559 2567.
[11] 黄毅,陈永胜. 石墨烯的功能化及其相关应用. 中国科学B 辑,2009,39(9): 887 896.
[12] 李旭,赵卫峰,陈国华. 石墨烯的制备与表征研究. 材料导报,2008,22(8):48-52.
[13] Novoselov K S,Geim A K,Morozov S V,et al. Electric field effectin atomically thin carbon films. Science,2004,306(5696):666 669.
[14] Geim A K,Novoselov K S. The rise of graphene. Nat. Mater.,2007,6(3): 183 191.
[15] Geim A K. Graphene: status and prospects. Science,2009,324(5934): 1530 1534.
[16] Wu J S,Pisula W,Mullen K. Graphenes as potential material forelectronics. Chem. Rev.,2007,107(3): 718 747.
[17] Rao C N R,Sood A k,Voggu R,et al. Some novel attributes of graphene. J. Phys. Chem. Lett.,2010,1(2): 572 580.
[18] Allen M J,Tung V C,Kaner R B. Honeycomb carbon: a review of Graphene. Chem. Rev.,2010,110(1): 132 145.
[19] Zhang Y,Tan J W,Stormer H L,et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature,2005,438: 201 204.
[20] Bolotin K I,Sikes K J,Jiang Z,et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun.,2008,146(9/10):351 355.
[21] Stankovich S,Dikin D A,Piner R D,et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45(7): 1558 1565.
[22] Hernandez Y,Nicolosi V,Lotya M,et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotech-nol.,2008,3(9): 563 568.
[23] Khan U,O'Neill A,Lotya M,et al. High-concentration solvent exfoliation of graphene. Small,2010,6(7): 864 871.
[24] Hamilton C E,Lomeda J R,Sun Z,et al. High-yield organic dispersions of unfunctionalized graphene. Nano Lett.,2009,9(10):3460 3462.
[25] Biswas S,Drzal L T. A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid interface. Nano Lett.,2009,9(1): 167 172.
[26] Qian W,Hao R,Hou Y,et al. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality.Nano Res.,2009,2: 706 712.
[27] Lotya M,Hernandez Y,King P J,et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J.Am. Chem. Soc.,2009,131(10): 3611 3620.
[28] De S,King P J,Lotya M,et al. Flexible,transparent,conducting films of randomly stacked graphene from surfactant-stabilized,oxide-free graphene dispersions. Small,2010,6(3): 458 464.
[29] Englert J M,R hrl J,Schmidt C D,et al. Soluble graphene: generation of aqueous graphene solutions aided by a perylenebisimide-based bolaamphiphile. Adv. Mater.,2009,21(42): 4265 4269.
[30] Li X,Zhang G,Bai X,et al. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol.,2008,3(9):538 542.
[31] Janowska I,Chizari K,Ersen O,et al. Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia.Nano Res.,2010,3(2): 126 137.
[32] Pu N W,Wang C,Sung Y,et al. Production of few-layer grapheme by supercritical CO2 exfoliation of graphite. Mater. Lett.,2009,63(23): 1987 1989.
[33] Knieke C,Berger A,Voigt M,et al. Scalable production of graphene sheets by mechanical delamination. Carbon,2010,48(11):
[34] Srivastava S K,Shukla A K,Vankar V D,et al. Growth,structure and field emission characteristics of petal like carbon nano-structured thin films. Thin Solid Films,2005,492(1/2):124 130.
[35] Zhu M,Wang J,Outlaw R A,et al. Synthesis of carbon nanosheetsand carbon nanotubes by radio frequency plasma enhanced chemical vapor deposition. Diam. Relat. Mater.,2007,16(2): 196 201.
[36] Wang J,Zhu M,Outlaw R A,et al . Synthesis of carbon nanosheetsby inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon,2004,42(14): 28672872.
[37] Berger C,Song Z,Li X,et al. Electronic confinement and coherence in patterned epitaxial graphene. Science,2006,312(5777):1191 1196.
[38] Berger C,Song Z,Li T,et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B,2004,108(52): 19912 19916.
[39] Kim K S,Zhao Y,Jang H,et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature,2009,457(7230): 706 710.
[40] Lee Y,Bae S,Jang H,et al. Wafer-scale synthesis and transfer of graphene films. Nano Lett.,2010,10(2): 490 493.
[41] Reina A,Jia X,Ho J,et al. Large area,few-layer graphene films onarbitrary substrates by chemical vapor deposition. Nano Lett.,2009,9(1): 30 35.
[42] Faugeras C,Faugeras B,Orlita M,et al. Thermal conductivity of graphene in corbino membrane geometry. ACS Nano,2010,4(4):1889 1892.
[43] Sutter P W,Flege J I,Sutter E A. Epitaxial graphene on ruthenium.Nat. Mater.,2008,7(5): 406 411.
[44] 刘忠良. 碳化硅薄膜的外延生长、结构表征与石墨烯的制备. 合肥: 中国科学技术大学博士论文,2009.
[45] Compton O C,Nguyen S T. Graphene oxide,highly reduced graphene oxide and graphene: versatile building blocks for carbonbased materials. Small,2010,6(6): 711 723.
[46] Dreyer D R,Park S,Bielawski C W,et al. The chemistry of graphene oxide. Chem. Soc. Rev.,2010,39(1): 228 240.
[47] Tsuyoshi N,Yoshiaki M. Formation process and structure of graphite oxide. Carbon,1994,32 (3): 469 475.
[48] Staudenmaier L. Verfahren zur darstellung der graphits ure. Ber. Dt.Sch. Chem. Ges.,1898,31(2): 1481 1487.
[49] Brodie B C. Sur le poids atomique du graphite. Ann. Chim. Phys.,1860,59: 466 472.
[50] Hummers W,Offeman R. Preparation of graphitic oxide. J. Am.Chem. Soc.,1958,80(6): 1339.
[51] Chattopadhyay J,Mukherjee A,Billups W E,et al. Graphite epoxide. J. Am. Chem. Soc.,2008,130(16): 5414 5415.
[52] Wissler M. Graphite and carbon powders for electrochemical applications. J. Power Sources,2006,156(2): 142 150

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top