从PKE应答器入手,分析汽车无线安全应用设计挑战
消费者对安防与安全的需求推动着汽车电子市场的迅速扩张。与此同时,汽车制造商面临着必须实现具有成本效益、以性能为导向的电子控制模块的挑战。在汽车制造商的产品细分目标与消费者的需求之间,汽车安防与安全系统架起了一座相互协调的桥梁。
从成熟的遥控无钥门控(RKE)应用,到新兴的无源无钥门控(PKE)、胎压监测系统(TPMS)、电子收费和蓝牙免提系统等应用,车载无线系统正在不断开花结果。这些无线连接有助于提高安防与安全模块的性能。而由于技术性价比及可获得性等原因,其它一些专用短距离通信系统在安防与安全领域的应用受到了局限。
除了加快上市进程和增加功能性等常见压力外,设计人员还面临其它许多挑战,如具备成本效益的性能增强、功耗、系统尺寸和加密安全等。
举例来说,我们可以审视一种代表着当今系统架构师所面临众多挑战之一的无线系统:一个可接收和发射数据的智能应答器(smart transponder)。在这种双向通信系统中,基站与应答器能够自动通信,无需人工干预。这种低成本的双向通信应答器可设计成采用两个频率工作:125kHz用于接收数据,UHF(315、433、868或915MHz)用于发射数据。由于125kHz信号的非传播(nonpropagating)属性,双向通信距离一般不超过3米。而鉴于该应答器仍然具备能够执行可选操作的按钮,故当按下发射按钮时,还可支持更长的单向传输距离(从应答器至基站)。
在这些应用中,基站用125kHz频率发射命令,同时搜索区域内的有效应答器以UHF频率发回的任何响应。智能应答器一般处于接收模式,并搜索任何有效的125kHz基站命令。如果接收到任何有效的基站命令,应答器以UHF频率发射响应。这就是我们所说的"无源无钥门控(PKE)系统"。PKE系统采用125kHz电路进行双向通信。可利用包含有数字与低频模拟前端的集成系统级芯片(SoC)智能微控制器来生产低成本、小体积及低功耗的PKE转发器。
但随着设计人员积累越来越多的系统经验,他们又面临着如下挑战:如何使PKE应答器足够可靠,从而成为常规RKE应答器的一种具务成本效益的替代方案,同时又确保它能达到特定的系统目标?尽管PKE应答器看起来似乎需要采用复杂及昂贵的电路才能实现,但通过使用一些相对简单的低成本电路,设计人员所面临的挑战即可以得到解决。这些低成本电路以一个智能PIC微控制器(PIC16F639)为中心,包含了支持安全双向通信所必需的全部功能。
图中所示的智能PKE系统仍然具有支持可选操作的按钮,但主要工作无需任何人机干预即可完成。PKE系统的双向通信顺序如下:
* 基站用125KHz频率发射命令;
* 应答器经由三副正交125KHz LC谐振天线接收基站命令;
* 若命令有效,应答器通过一个UHF发射机发射响应(加密数据);若数据正确,则基站接收响应,并启动开关。
设计人员所面临的另一项挑战,是如何以具备成本效益的方式实现系统性能增强?要实现增强的性能包括:通信距离、天线方向性、小尺寸封装、加密安全及门锁"开/关"条件下的低功耗等。通过提高125kHz基站命令的可靠作用距离,并保持较长的电池工作时间,可满足关键的系统性能增强要求。
在电池供电的应答器应用中,使用UHF的最大通信距离大约为100米,但采用低频(125kHz)则只能达到几米。因此,双频PKE应答器的通信距离主要受125kHz基站命令作用距离的限制。由于低频信号的非传播特性,125kHz信号会随距离增加而快速衰减。例如,假设基站输出300Vpp左右的天线电压,则由大约3米开外的应答器的线圈天线所感应的电压仅为3mVpp左右,与应用环境的噪声级相当。所以,如何有效地检测弱信号,成为系统设计人员所面临的一个棘手的性能问题。
要延长125kHz基站命令的作用距离,可考虑以下两种可能的解决方案:增加基站发射机的发射功率;或提高应答器的输入灵敏度。基站发射机的最大发射功率一般由政府规范规定。因此,若基站发射的最大功率在允许范围内,则提高输入信号检测灵敏度,即上述第二种方法,是唯一有效的解决方案。为达到3米的双向通信距离,应答器输入灵敏度必须达到3mVpp左右。
图:PKE系统的主要操作无需人工进行
天线的方向性问题
由天线单元辐射的任何无线电信号都会沿某种方向角传播,如果使用性能良好的天线,信号传播的方向性更强(或辐射角更窄)。由LC谐振电路辐射的低频(125kHz)信号虽不像高频信号那样有更好的方向性,但它仍然具有一定的方向性。在给定的应答器设计条件下,低频信号的通信距离(或感应电压)取