微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > STM32学前班教程之一:为什么选择STM32?

STM32学前班教程之一:为什么选择STM32?

时间:11-27 来源:互联网 点击:
为什么是它——我选择STM32的原因。

--------首先声明一下:该教程由思蜕盟论坛原创,本人一是为了自己学习,自我感觉此对stm32入门很有帮助,二是为了给更多的初学者带来方便,所以决定转载。转载中纠正其中的部分错误,尽量加入最新的信息,并增加本人的部分见解和学习的感受,希望对阅读者带来点点阅读价值!真诚欢迎读者提出疑问,而后共同交流,共同进步!

我对未来的规划是以功能性为主的,在功能和面积之间做以平衡是我的首要选择,而把运算放在第二位,这根我的专业有关系。里面的运算其实并不复杂,在入门阶段想尽量减少所接触的东西。

不过说实话,对DSP的外设并和开发环境不满意,这是为什么STM32一出就转向的原因。下面是我自己做过的两块DSP28的全功能最小系统板,在做这两块板子的过程中发现要想尽力缩小DSP的面积实在不容易(目前只能达到50mm×45mm,这还是没有其他器件的情况下),尤其是双电源的供电方式和1.9V的电源让人很头疼。

后来因为一个项目,接触了LPC2148并做了一块板子,发现小型的ARM7在外设够用的情况下其实很不错,于是开始搜集相关芯片资料,也同时对小面积的AVR和51都进行了大致的比较,这个时候发现了CortexM3的STM32,比2148拥有更丰富和灵活的外设,性能几乎是2148两倍(按照MIPS值计算)。正好2148我还没上手,就直接转了这款STM32F103。

与2811相比较(核心1.8V供电情况下),135MHz×1MIPS。现在用STM32F103,72MHz×1.25MIPS,性能是DSP的66%,STM32F103R型(64管脚)芯片面积只有2811的51%,STM32F103C型(48管脚)面积是2811的25%,最大功耗是DSP的20%,单片价格是DSP的30%。且有更多的串口,CAP和PWM,这是有用的。高端型号有SDIO,理论上比SPI速度快。

由以上比较,准备将未来的拥有操作系统的高端应用交给DSP的新型浮点型单片机28335,而将所有紧凑型小型、微型应用交给STM32。

ARM Cortex-M3相比于ARM其他系列微控制器,具有以下优势或特点:
1.三级流水线+分支预测
ARM Cortex-M3与ARM7内核一样,采用适合于微控制器应用的三级流水线,但增加了分支预测功能。

现代处理器大多采用指令预取和流水线技术,以提高处理器的指令执行速度。流水线处理器在正常执行指令时,如果碰到分支(跳转)指令,由于指令执行的顺序可能会发生变化,指令预取队列和流水线中的部分指令就可能作废,而需要从新的地址重新取指、执行,这样就会使流水线“断流”,处理器性能因此而受到影响。特别是现代C语言程序,经编译器优化生成的目标代码中,分支指令所占的比例可达10-20%,对流水线处理器的影响会的更大。为此,现代高性能流水线处理器中一般都加入了分支预测部件,就是在处理器从存储器预取指令时,当遇到分支(跳转)指令时,能自动预测跳转是否会发生,再从预测的方向进行取指,从而提供给流水线连续的指令流,流水线就可以不断地执行有效指令,保证了其性能的发挥。
ARM Cortex-M3内核的预取部件具有分支预测功能,可以预取分支目标地址的指令,使分支延迟减少到一个时钟周期。

2.哈佛结构
从内核访问指令和数据的不同空间与总线结构,可以把处理器分为哈佛结构和普林斯顿结构(或冯.诺伊曼结构)。冯.诺伊曼结构的机器指令、数据和I/O共用一条总线,这样内核在取指时就不能进行数据读写,反之亦然。这在传统的非流水线处理器(如MCS51)上是没有什么问题的,它们取指、执行分时进行,不会发生冲突。但在现代流水线处理器上,由于取指、译码和执行是同时进行的(不是同一条指令),一条总线就会发生总线冲突,必须插入延迟等待,从而影响了系统性能。ARM7TDMI内核就是这种结构的。
而哈佛结构的处理器采用独立的指令总线和数据总线,可以同时进行取指和数据读写操作,从而提高了处理器的运行性能。ARM Cortex-M3、ARM966E、ARM926EJ、ARM1136JF等内核都采用了哈佛结构。

3.内置嵌套向量中断控制器(NVIC)
针对业界对ARM处理器中断响应的问题,Cortex-M3首次在内核上集成了嵌套向量中断控制器(NVIC)。Cortex-M3的中断延迟只有12个时钟周期(ARM7需要24-42个周期);Cortex-M3还使用尾链技术,使得背靠背(back-to-back)中断的响应只需要6个时钟周期(ARM7需要大于30个周期)。以STM32运行在75MHz为例,中断延迟只有80ns-160ns。另外,Cortex-M3采用了基于栈的异常模式,使得芯片初始化的封装更为简单。
ARM7TDMI内核不带中断控制器,具体MCU的中断控制器是各芯片厂商自己加入的,这使得各厂商的ARM7 MCU中断控制部分都不一样,给用户使用及程序移植带来了很大麻烦。Cortex-M3内核集成NVIC,各厂商生产的基于Cortex-M3内核的MCU都具有统一的中断控制器,对用户使用各种Cortex-M3 MCU,特别是中断编程带来了很大的便利。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top