微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > STM32学前班教程之六:这些代码大家都用得到

STM32学前班教程之六:这些代码大家都用得到

时间:11-27 来源:互联网 点击:
注:下面是一些常用的代码,网上很多但是大多注释不全。高手看没问题,对于我们这些新手就费劲了……所以我把这些代码集中,进行了逐句注释,希望对新手们有价值。

阅读flash:芯片内部存储器flash操作函数

我的理解——对芯片内部flash进行操作的函数,包括读取,状态,擦除,写入等等,可以允许程序去操作flash上的数据。

基础应用1,FLASH时序延迟几个周期,等待总线同步操作。推荐按照单片机系统运行频率,0—24MHz时,取Latency=0;24—48MHz时,取Latency=1;48~72MHz时,取Latency=2。所有程序中必须的

用法:FLASH_SetLatency(FLASH_Latency_2);

位置:RCC初始化子函数里面,时钟起振之后。

基础应用2,开启FLASH预读缓冲功能,加速FLASH的读取。所有程序中必须的

用法:FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

位置:RCC初始化子函数里面,时钟起振之后。

3、阅读lib:调试所有外设初始化的函数。

我的理解——不理解,也不需要理解。只要知道所有外设在调试的时候,EWRAM需要从这个函数里面获得调试所需信息的地址或者指针之类的信息。

基础应用1,只有一个函数debug。所有程序中必须的。

用法:#ifdefDEBUG

debug();

#endif

位置:main函数开头,声明变量之后。

4、阅读nvic:系统中断管理。

我的理解——管理系统内部的中断,负责打开和关闭中断。

基础应用1,中断的初始化函数,包括设置中断向量表位置,和开启所需的中断两部分。所有程序中必须的。

用法:voidNVIC_Configuration(void)

{

NVIC_InitTypeDefNVIC_InitStructure;//中断管理恢复默认参数

#ifdefVECT_TAB_RAM

//如果C/C++CompilerPreprocessorDefinedsymbols中的定义了VECT_TAB_RAM(见程序库更改内容的表格)

NVIC_SetVectorTable(NVIC_VectTab_RAM,0x0);//则在RAM调试

#else//如果没有定义VECT_TAB_RAM

NVIC_SetVectorTable(NVIC_VectTab_FLASH,0x0);//则在Flash里调试

#endif//结束判断语句

//以下为中断的开启过程,不是所有程序必须的。

//NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);

//设置NVIC优先级分组,方式。

//注:一共16个优先级,分为抢占式和响应式。两种优先级所占的数量由此代码确定,NVIC_PriorityGroup_x可以是0、1、2、3、4,分别代表抢占优先级有1、2、4、8、16个和响应优先级有16、8、4、2、1个。规定两种优先级的数量后,所有的中断级别必须在其中选择,抢占级别高的会打断其他中断优先执行,而响应级别高的会在其他中断执行完优先执行。

//NVIC_InitStructure.NVIC_IRQChannel=中断通道名;

//开中断,中断名称见函数库

//NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0;

//抢占优先级

//NVIC_InitStructure.NVIC_IRQChannelSubPriority=0;

//响应优先级

//NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;//启动此通道的中断

//NVIC_Init(&NVIC_InitStructure);//中断初始化

}

5、阅读rcc:单片机时钟管理。

我的理解——管理外部、内部和外设的时钟,设置、打开和关闭这些时钟。

基础应用1:时钟的初始化函数过程——

用法:voidRCC_Configuration(void)//时钟初始化函数

{

ErrorStatusHSEStartUpStatus;//等待时钟的稳定

RCC_DeInit();//时钟管理重置

RCC_HSEConfig(RCC_HSE_ON);//打开外部晶振

HSEStartUpStatus=RCC_WaitForHSEStartUp();//等待外部晶振就绪

if(HSEStartUpStatus==SUCCESS)

{

FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

//flash读取缓冲,加速

FLASH_SetLatency(FLASH_Latency_2);//flash操作的延时

RCC_HCLKConfig(RCC_SYSCLK_Div1);//AHB使用系统时钟

RCC_PCLK2Config(RCC_HCLK_Div2);//APB2(高速)为HCLK的一半

RCC_PCLK1Config(RCC_HCLK_Div2);//APB1(低速)为HCLK的一半

//注:AHB主要负责外部存储器时钟。PB2负责AD,I/O,高级TIM,串口1。APB1负责DA,USB,SPI,I2C,CAN,串口2345,普通TIM。



RCC_PLLConfig(RCC_PLLSource_HSE_Div1,RCC_PLLMul_9);

//PLLCLK=8MHz*9=72MHz

RCC_PLLCmd(ENABLE);//启动PLL

while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY)==RESET){}

//等待PLL启动

RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

//将PLL设置为系统时钟源

while(RCC_GetSYSCLKSource()!=0x08){}

//等待系统时钟源的启动

}

//RCC_AHBPeriphClockCmd(ABP2设备1|ABP2设备2|,ENABLE);

//启动AHP设备

//RCC_APB2PeriphClockCmd(ABP2设备1|ABP2设备2|,ENABLE);

//启动ABP2设备

//RCC_APB1PeriphClockCmd(ABP2设备1|ABP2设备2|,ENABLE);

//启动ABP1设备

}

1、阅读exti:外部设备中断函数

我的理解——外部设备通过引脚给出的硬件中断,也可以产生软件中断,19个上升、下降或都触发。EXTI0~EXTI15连接到管脚,EXTI线16连接到PVD(VDD监视),EXTI线17连接到RTC(闹钟),EXTI线18连接到USB(唤醒)。

基础应用1,设定外部中断初始化函数。按需求,不是必须代码。

用法:voidEXTI_Configuration(void)

{

EXTI_InitTypeDefEXTI_InitStructure;//外部设备中断恢复默认参数

EXTI_InitStructure.EXTI_Line=通道1|通道2;

//设定所需产生外部中断的通道,一共19个。

EXTI_InitStructure.EXTI_Mode=EXTI_Mode_Interrupt;//产生中断

EXTI_InitStructure.EXTI_Trigger=EXTI_Trigger_Falling;

//上升下降沿都触发

EXTI_InitStructure.EXTI_LineCmd=ENABLE;//启动中断的接收

EXTI_Init(&EXTI_InitStructure);//外部设备中断启动

}



2、阅读dma:通过总线而越过CPU读取外设数据

我的理解——通过DMA应用可以加速单片机外设、存储器之间的数据传输,并在传输期间不影响CPU进行其他事情。这对于入门开发基本功能来说没有太大必要,这个内容先行跳过。

3、阅读systic:系统定时器

我的理解——可以输出和利用系统时钟的计数、状态。

基础应用1,精确计时的延时子函数。推荐使用的代码。

用法:

staticvu32TimingDelay;//全局变量声明

voidSysTick_Config(void)//systick初始化函数

{

SysTick_CounterCmd(SysTick_Counter_Disable);//停止系统定时器

SysTick_ITConfig(DISABLE);//停止systick中断

SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8);

//systick使用HCLK作为时钟源,频率值除以8。

SysTick_SetReload(9000);//重置时间1毫秒(以72MHz为基础计算)

SysTick_ITConfig(ENABLE);//开启systic中断

}

voidDelay(u32nTime)//延迟一毫秒的函数

{

SysTick_CounterCmd(SysTick_Counter_Enable);//systic开始计时



TimingDelay=nTime;//计时长度赋值给递减变量

while(TimingDelay!=0);//检测是否计时完成



SysTick_CounterCmd(SysTick_Counter_Disable);//关闭计数器

SysTick_CounterCmd(SysTick_Counter_Clear);//清除计数值

}

voidTimingDelay_Decrement(void)

//递减变量函数,函数名由“stm32f10x_it.c”中的中断响应函数定义好了。

{

if(TimingDelay!=0x00)//检测计数变量是否达到0

{

TimingDelay--;//计数变量递减

}

}

注:建议熟练后使用,所涉及知识和设备太多,新手出错的可能性比较大。新手可用简化的延时函数代替:

voidDelay(vu32nCount)//简单延时函数

{

for(;nCount!=0;nCount--);(循环变量递减计数)

}

当延时较长,又不需要精确计时的时候可以使用嵌套循环:

voidDelay(vu32nCount)//简单的长时间延时函数

{inti;//声明内部递减变量

for(;nCount!=0;nCount--)//递减变量计数

{for(i=0;i<0xffff;i++)}//内部循环递减变量计数

}

4、阅读gpio:I/O设置函数

我的理解——所有输入输出管脚模式设置,可以是上下拉、浮空、开漏、模拟、推挽模式,频率特性为2M,10M,50M。也可以向该管脚直接写入数据和读取数据。

基础应用1,gpio初始化函数。所有程序必须。

用法:voidGPIO_Configuration(void)

{

GPIO_InitTypeDefGPIO_InitStructure;//GPIO状态恢复默认参数

GPIO_InitStructure.GPIO_Pin=GPIO_Pin_标号|GPIO_Pin_标号;

//管脚位置定义,标号可以是NONE、ALL、0至15。

GPIO_InitStructure.GPIO_Speed=GPIO_Speed_2MHz;//输出速度2MHz

GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AIN;//模拟输入模式

GPIO_Init(GPIOC,&GPIO_InitStructure);//C组GPIO初始化

//注:以上四行代码为一组,每组GPIO属性必须相同,默认的GPIO参数为:ALL,2MHz,FLATING。如果其中任意一行与前一组相应设置相同,那么那一行可以省略,由此推论如果前面已经将此行参数设定为默认参数(包括使用GPIO_InitTypeDefGPIO_InitStructure代码),本组应用也是默认参数的话,那么也可以省略。以下重复这个过程直到所有应用的管脚全部被定义完毕。

……

}

基础应用2,向管脚写入0或1

用法:GPIO_WriteBit(GPIOB,GPIO_Pin_2,(BitAction)0x01);//写入1

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top