HFSS算法及应用场景简介
PO算法可以解决超大电尺寸问题的计算,但由于未考虑到多次反射等物理物体,主要用于结构均匀物理的电磁场计算。针对复杂结构且超大电尺寸问题,ANSYS通过收购Delcross公司(Savant软件)引入了SBR+算法,SBR+是在SBR算法(天线发射出射线,在表面"绘制"PO电流)的基础上考虑了爬行波射线(沿着表面追迹射线)、物理绕射理论PTD(修正边缘处的PO电流)、一致性绕射理论UTD(沿着边缘发射衍射射线,绘制阴影区域的电流),因此SBR+算法是高频射线方法,具有非常高效的速度,同时具有非常好的精度,在大型平台的天线布局中效果非常好。
图7、SBR与SBR+算法对比
SBR+支持从FEM、IE中导入远场辐射方向图或者电流源,也支持导入相应的测试数据,SBR+算法主要用于天线安装分析,支持多核、GPU等并行求解方式并且大多数任务可在低于8 GB内存下完成。
图8、FEM算法与SBR+算法仿真对比
混合算法(FEBI,IE-Region,PO-Region,SBR+ Region)
前面对频率内的各种算法做了介绍并说明了各种算法应用的场景,很多时候碰到的工程问题既包括复杂结构物理也包括超大尺寸物理,如新能源汽车上的天线布局问题,对仿真而言,最好的精度是用全波算法求解,最快的速度是采用近似算求解,针对该问题,ANSYS公司将FEM算法、IE 算法、PO 算法、SBR+算法等融合起来,推出混合算法。在一个应用案例中,采用不同算法的优点而回避不同算法的缺点,可极大限度的提高算法的效率,以及成为频域内解决大型复杂问题的必备算法。
HFSS中FEM与IE可以通过IE Region与FEBI边界进行混合求解,FEM与PO、SBR+算法可以通过添加PO Region及SBR+ Region进行混合,混合算法的使用扩大了HFSS的使用范围。
图9、FEM与IE混合求解与FEM对比
时域算法-transient算法
HFSS时域求解是基于间断伽略金法(discontinuous Galerkin method, DGTD)的三维全波电磁场仿真求解器,采用基于四面体有限元技术,能得到和HFSS频域求解器一样的自适应网格剖分精度,该技术使得HFSS的求精精度成为电磁场行业标准。这项技术完善了HFSS的频域求解器技术,帮助工程师对更加深入详细了解其所设计器件的电磁性能。
Transient算法支配方程见下图:
图10、Transient算法支配方程
采用HFSS-Transient算法,工程师可利用短脉冲激励对探地雷达、静电放电、电磁干扰、雷击和等应用问题开展研究,还包括时域反射阻抗以及短时激励下的瞬态场显示也可以借助它来完成。
图11、Transient算法应用场景
谐振分析-Eigenmode算法
谐振特性是每个结构都存在固有的电磁谐振,谐振的模式、频率和品质因子,与其结构尺寸相关,这些谐振既可能是干扰源的放大器,也可能是敏感电路的噪声接收器。谐振会导致信号完整性、电源完整性和电磁兼容问题,因而了解谐振对加强设计可靠性很有帮助。
Eigenmode算法支配方程见下图:
图12、Eigenmode算法支配方程
在HFSS中,使用eigenmode算法可计算三维结构谐振模式,并可呈现图形化空间的谐振电压波动,分析结构的固有谐振特性。依据谐振分析的结果,指导机箱内设备布局和PCB层叠布局,改善电磁兼容特性。
图13、Eigenmode算法应用场景
总结
HFSS里面有各种不同的算法,有全波算法、近似算法以及时域算法,工程师可以格局需要选择不同算法(最高的精度和最高的效率)。首先针对频域算法,使用范围见图14,通常FEM算法和IE算法非常适合于中小尺寸问题,对大型问题,FEM/IE运行时间/内存需求非常巨大;PO方法适合解决超大电尺寸问题,但对问题复杂度有限制,通常通常不能提供客户所期望的精度,但对于均匀物体是一个很好的选择;SBR+算法适合解决超大电尺寸问题,对复杂结构也能够提供很好的精度和速度;针对既有电小尺寸复杂结构计算问题,又有电大尺寸布局计算问题,混合算法是一个很好的选择。Transient算法适合解决与时间相关的电磁场问题,如ESD、TDR等;Eigenmode算法专门针对谐振仿真。
图14、HFSS 频域算法选择
- PBG结构的微带贴片天线设计(03-26)
- HFSS求解模式,扫频方式等的说明(02-13)
- 220GHz无源三倍频器设计(11-04)
- HFSS三种辐射边界的区别和选择技巧(05-15)
- 天线去耦网络的仿真设计(08-10)
- 基于HFSS的双脊喇叭天线的设计与仿真(09-20)