微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 使用宽光谱信号进行无线传输的理论研究

使用宽光谱信号进行无线传输的理论研究

时间:06-23 来源:IEEE Spectrum中文版《科技纵览》作者: 徐正元 等 点击:

宽光谱信号的传输特征在不同时空环境下如何变化,以及如何充分利用多维自由度来实现高可靠性的传输等难题被一一破解,使得宽光谱无线光通信得到进一步发展,有望早日在信息基础设施建设、特种行业等领域发挥作用。

城市的夜晚,无论是在马路上还是商场中,无论是在家中还是在车库里,往往都是一片灯火通明。这些色彩斑斓的光线绝大部分来自半导体光源,尤其是LED。得益于半导体技术的飞速发展和新型半导体器件的出现,半导体光源已可覆盖红外光(波长780纳米以上)、可见光(波长380~780纳米)至紫外光(波长380纳米以下)的宽光谱谱段,广泛用于红外监控,办公室、会议室、教室、地下车库等室内照明显示,道路照明、交通指示,紫外杀菌,手持以及头戴式便携照明等领域。

半导体光源不仅丰富了照明源,让绿色、节能的理念在日常生活中普及开来,也带来了诸多灵感。宽光谱信号具有带宽大、不需要频谱许可、抗电磁干扰能力强、信息安全性高和定位精准等特点,极大地推动了能源与信息科学的交叉融合,在如今数据容量飞涨而现有可用无线频谱资源容量趋于饱和的情况下,给未来的通信行业带来了新的可能。因此,自2009年开始,全球范围内都掀起了半导体光源的研究热潮。研究人员努力开拓从红外光到可见光和紫外光谱段的丰富光谱资源,将待传输的信号加载到一定波段和一定谱宽的LED或其他光源发射的光波上,研究基于不同波长光载波的宽光谱信号无线传输技术,实现信号在空间的高效、可靠传输,满足未来无线通信应用的需求。

1

可见光LED光源的普适应用

研究人员已经看到,宽光谱无线光通信可以在信息基础设施建设、特种行业(如国防安全、电磁安全苛求或敏感行业、车联网、海洋资源开发、空天信息化)等领域发挥不可或缺的作用。

首先,结合日益普及的可见光LED照明系统,利用其空间复用能力可大幅提升区域容量,为人口密集区域提供大容量宽带移动服务,比如在居民区、机场和火车站等交通枢纽,会场和体育场馆等人口集聚区,飞机机舱和高速列车车厢等用户密集区域提供服务。

其次,针对拥堵的交通状况,基于LED汽车车灯、交通信号灯、信息显示屏、路灯等,可方便地构建车联网和大型交通信息网络,服务于交通管理部门和智能驾驶。

第三,伴随物联网在各行业的应用渗透,作为基础设施的LED光源延伸为天然的信息发布节点,使网络的接入如加装灯泡一样便捷;同时,光线的直线传播特性使得精准定位成为可能,由此衍生出新型位置服务。最后,不同波段的光信号在室外传输时,其传输机理和信道特征表现出显著的波长选择性,大气散射导致光的传输方向改变,散射作用随波长的缩短而加强,尤其是波长小至280纳米以下的深紫外频段,由于高空臭氧层的吸收,能够使通信系统免受太阳光的干扰,十分有利于散射通信。

利用这一特点,能够实现发射端与接收端无须对准的非视距无线光通信,具有突破视距、适应地形以及安全保密的特点,可以广泛应用于军事、安全和城市移动通信领域,前景广阔。

使用可见光LED光源发出的光作为信息载体的无线传输技术,称为可见光通信(VLC)技术。毫无疑问,这一技术得到了学术界和工业界的广泛关注。鉴于LED可高速调制信号的特性,利用待传输的数字信号可以有效控制LED光源产生快速(每秒可达数百万次)的变化,这些变化被光敏传感器捕捉,而人的肉眼却不会察觉。这样一来,就可以保证光信号能够被高灵敏度探测器接收,使得同一LED器件既能实现满足视觉效果的节能照明显示,又能实现对电子终端的信息传输。简而言之,有光就能通信,有光就能互连。最终,LED光源将演变成为泛在的互联网接入节点,形成光联万物、无缝覆盖的无线光通信网络。

可见光通信与Wi-Fi等射频无线通信相比具有很多独特优势。首先,光的带宽高出射频信号至少4个量级,这使得可见光通信的潜在数据速率呈几何级数提升。其次,可见光信号的区域覆盖和定向传输特性可允许相邻光束交叉通过而互不影响,从而使得互干扰达到最小,保证可见光通信链路的性能;而射频信号间的互干扰会严重制约其系统性能。第三,可见光无法穿透非透明物体,如墙壁、隔断、天花板等,保障了数据的安全性和私密性;而射频信号容易被截获和监听。可见光通信可结合泛在和密集覆盖的LED光源设施,无须布设射频基站,即可实现泛在覆盖的绿色通信,提供单链路每秒千兆比特级的无线光通信速率,且消除了电磁辐射与干扰等方面的困扰。

宽光谱无线光通信技术具有诸多优点和广阔的应用

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top