微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 综合文库 > 射频同轴电缆设计和制造中若干问题的分析

射频同轴电缆设计和制造中若干问题的分析

时间:01-07 来源:国际线缆与连接 点击:

1 引言

射频同轴电缆主要应用于电子通信设备、无线电通信系统的射频发射单元、楼宇布线及CATV的分配和接入网,以其宽频带、高速率的多媒体传输性能而广泛使用。作者长期从事于射频电缆的研究和开发,并有机会与同行,以及网络运管商切磋交流,期望把自己在设计和制造中的一些心得体会以杂谈的形式与大家交流,并望得到大家的指教,共同提高,共同进步。本文主要论述基站用射频同轴电缆设计和制造的若干问题的分析,以及如何解决,供有关人员的参考。

2 损耗与驻波

2.1损耗和驻波峰值的计算

射频同轴电缆的损耗和驻波分别表征了电缆传输效率及其均匀性,是最重要指标之一。对于这些传输参数的计算是非常重要的,它可以分析电缆产品性能并反馈于电缆的设计或修改设计方案是必不可少的。其计算公式如下

\

式中:α为电缆衰减(dB/1000m);αR为导体衰减(dB/1000m);αG为介质衰减(dB/1000m);Δα为失配衰减(dB/1000m);f为工作频率(MHz);ε为相对介电常数;K1、K2分别为内、外导体结构材料系数;d、D分别为内、外导体的等效直径(mm);tgδ为绝缘的介质损耗角正切;S为电压驻波比。

光电缆中出现2倍波长的不均匀性时,就会出现驻波峰值,若电磁波波速为3×108m/s,则
\

式中:f(/Δf)为测试频率或频率差(MHz);h为阻抗不均匀点的长度(m)。

驻波峰值在电压驻波比(VSWR)测试时表现出两种形式:一种是在某频点出现,则可能由电缆中相应长度的周期性不均匀所引起的;另一种在周期性频率点上出现,其频率差相对应的长度较长,则通常是由被测电缆的某一点损伤所引起的,或因整根样品的阻抗不匹配导致的。

2.2实例分析

我国西部地区地广人稀,无线接入系统是实现该农村地区通信的一种主要手段。某公司在该系统中使用5D-FB型射频同轴电缆作为馈张。该产品标准出自于日本关西电缆产品标准,其导线的直径为1.8mm,物理发泡聚乙烯绝缘外径为5.0mm。经过讨论和试验,发现该系统的发射系统在频率为247MHz、损耗<13dB时,即可满足传播的覆盖范围为15~50km的要求。由此,某公司为了节约电缆制造成本,将该电缆的结构尺寸减小为:导线直径1.4mm,绝缘线芯外径4.5mm,结果出现电缆性能不够稳定,寻求作者帮助解决。

该公司提供了图1、2所示的改型后的产品实测数据(试样长为20.15m)。

\

 图1 改型后电缆的驻波及及圆图曲线

从图1、2可知,当效率300MHz时的衰减为11.76dB/100m,与原5D-FB的指标相接近,甚好;但是其电压驻波比(VSWR)在318MHz处达1.7349,超过了原技术指标。本人认为这主要是由于电缆阻抗不匹配所引起的,于是在矢量网络分析仪上取其11个峰值点,并前后频率差值除以10,得到频率差Δf=6.2MHz,按式(2)计算可得ε=1.44,再由式(3)和式(4)求得电缆的波阻抗Zc(Ω)和工作电容C(pF/m)

\

\

 图2 改型后电缆的衰减-频率特性曲线

由式(3)可知,Zc=58.3Ω已超过标准规定值,这是造成驻波比过大的根本原因,经计算设计,认为导线直径仍为1.4mm,但绝缘外径改小为3.9mm是较合理的,在线测试电容为82pF/m。经结构尺寸修正后投入试生产,并对产品进行抽样试验。试验结果见图3、4,试样长度为19.5m。

\
图3 修正后电缆的驻波及圆图曲线 

从图3、4可知,Δf=6.2MHz,相应波阻抗Zc=49.5Ω,在147MHz时损耗α=8.78dB/100m,265MHz时α=12.11dB/100m,460MHz时α=16.87dB/100m,而其驻波峰值在462MHz处为1.33。这些指标均完全满足使用的要求。由此可知,当产品结构改型时,要首先进行设计计算,否则有可能像上述公司那样错误认为增大绝缘外径,减小电容,就可获得较低损耗,但结果却适得其反。

\

图4 修正后电缆衰减-频率特性曲线

为了更好地说明电缆衰减中导体与介质之间所占比例,可以通过式(1),以及上述已知测试值(图3、图4)进行运算来说明问题。为了简略起见,把导体常数K1、K2以1代入(圆铜线为1),此时导体衰减分量可能偏小,而计算出介质损耗为最大值,但不影响分析。将上述147MHz(S=1.1)和460MHz(S=1.2)的衰减值代入式(1)可得以下联列方程
\
解之可得:sprt(ε) =1.132;tgδ=6.1×10-4。并将它们代入460MHz频点的衰减公式(6)可得
\
从式(7)、式(8)可知,在460MHz频点时,导体损耗占该电缆总损耗的80%,而其中内导体占总损耗的60%,这说明要降低产品的损耗,首先要从内导体上下工夫。同样也可以看出:介质损耗与频率f成正比,而导体损耗仅仅与频率的开方根成正比。例如,在较低频率147MHz时,其导体损耗占总损耗90%,但随着传输频率增加,尤其传输频率达几千兆赫后,介质损耗起着主导地位,这一点在本文第4节中将详细介绍。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top