射频同轴电缆传输系统的设计与维护
介绍同轴电缆的结构与传输特性、射频传输干线与分配网络设计技术。
1 RF同轴电缆的结构与传输特性
1.1 结构
RF同轴电缆由内导体、绝缘体、外导体和护套4部分组成,绝缘体使内、外导体绝缘且保持轴心重合,这就是同轴电缆。内外导体由电介质(绝缘材料)隔开,电介质在很大程度上决定着同轴电缆的传输速度和损耗特性,常使用的绝缘材料是干燥空气、聚乙烯、聚丙烯、聚氯乙烯等材料的混合物。物理发泡电缆因损耗小、频率特性好、不易进水得到优选应用。
1.2 传输特性
(1)同轴电缆内的电磁场分布
电场强度按正弦分布,在同轴电缆中传输的电波不会泄漏到电缆之外,在应用中,外导体通常是接地的,故具有良好的屏蔽作用,传输的电视信号不受外界杂波的干扰,里面的信号也不会辐射出去。
(2)趋肤效应
高频信号的电流流过电缆时,电流集中于导体表面而使导体有效横截面积减少、电阻值加大的现象称之为趋肤效应。因为有趋肤效应,同轴电缆中的电流只沿内导体的外侧和外导体的内侧流动,因此,电缆的许多性质取决于内导体的外径和外导体的内径,电缆内、外部的电磁场也不相互干扰。趋肤深度与频率f(MHz)的平方根成反比,因此,同轴电缆的导体损耗与频率的平方根成正比。
1.3 同轴电缆性能
(1)特性阻抗
特性阻抗Zc定义为在同轴电缆终端匹配的情况下,电缆上任意点电压与电流的比值。同轴电缆的特性阻抗由导体的直径和导体间介质决定,与电缆长度无关。在CATV系统中,同轴电缆的特性阻抗均为75 Ω。
(2)衰减常数β与温度系数
RF信号在同轴电缆中传输时的衰减量与电缆的尺寸、介电常数、工作频率有关。同轴电缆信号的衰减程度,以衰减常数(β)表示单位长度(如100 m)电缆对信号衰减的dB数。衰减常数与信号频率的平方根成正比,即在同一段电缆,信号频率越高,衰减常数越大;信号频率越低,衰减常数越小。温度系数表示温度变化对电缆损耗值的影响,温度上升,电缆的损耗值增大;温度下降,电缆的损耗值减小。温度系数定义为温度升高或降低1℃,电缆对信号衰减量增大或减小的百分数。表1是根据和平县有线电视台的频道配置选出8个频道,在33℃和13℃两个常温下,对汉胜RF同轴电缆-5型和-7型进行测量的结果。
表1两种常温下的汉胜电缆-7与-5型的衰减常数(β)
频道图像载频(MHz)
33℃dB/100 m13℃dB/100 m
-7型-5型-7型-5型
DS149.7534.7533.9
DS257.753.45.253.34.25
DS585.25463.85
DS6168.255.68.15.47
DS11208.25695.87.7
Z30400.258.112.27.610.5
DS13471.259.614.58.412.7
DS 22543.2510.815.59.213.5
上表数据显示,衰减常数和信号的频率有很大的关系,也和温度系数关系密切。在CATV网络实际应用中,随着时间的增加,同轴电缆会老化,电缆的衰减特性改变很大,3年后电缆的衰减量大约增大15%,6年后大约增大40%。
2 CATV射频传输干线设计技术
RF传输干线的功能是以同轴电缆为传输介质,利用干线放大器来补偿和均衡电缆的衰减特性和温度特性,使传送的信号保持适当的电平值。RF信号在电缆中传输的衰减量随传输距离延长而增大,RF同轴电缆的衰减特性使不同频率的信号在电缆中衰减的程度不同,因此,在RF传输干线中,要对信号进行电平补偿和均衡,故要选用传输特性好的电缆和性能优良的干线放大器,由于使用了有源器件放大器,就要把系统的截噪比、交调的影响减少到最小。
2.1 传输干线的组成技术
RF传输干线由RF同轴电缆、干线放大器、衰减器、均衡器及定向耦合器构成。
射频(RF)传输干线由CATV前端或由前端通过光缆传输给光接收机输出RF信号来提供射频电视信号进行传输。
使用定向耦合器的目的是从干线中提取出一部分信号功率供给分配网络。一般定向耦合器尽量选用接入损失较小的,尽可能安装在干线放大器的输出端,使其输入电平较高。一般干线放大器具有分支器输出口,使用起来较方便。
干线放大器在放大电路基础上,一般具有可调衰减器和可调均衡器,使干线放大器保持稳定的输出电平和适当的斜率。
衰减器可以适当调节输入、输出端信号电平,使其保持在适当的范围内。衰减器用电阻构成衰减网络,由于没有电抗元件,因此只有幅度的衰减而没有相移。连续可调式衰减器是干线放大器的一个重要组成部分,可调范围一般为0~20 dB,可以方便地调节放大器输入端的信号电平。
均衡器的作用是补偿
射频同轴电缆 相关文章:
- 射频同轴电缆选择指南(10-06)
- 射频同轴电缆驻波的影响分析(01-10)
- 同轴电缆的结构特性及其质量检测方法(01-07)
- 射频同轴电缆屏蔽衰减测试方法的比较(10-10)
- 射频同轴电缆设计和制造中若干问题的分析(01-07)