基于FPGA的LCoS驱动及图像FFT变换系统设计
时间:06-05
来源:互联网
点击:
2 实验仿真结果和测量结果分析
图4 是采用Modelsim 6. 5b 进行功能仿真的结果。
利用QuartusV9. 1 自带的TimeQuest Timing Analyzer进行时序约束后, 在实验板上的场信号测量结果如图5所示, 场扫描频率已达到368 Hz, 经测量其他引脚输出信号也均满足时序要求。由于FPGA 器件资源限制, 对图像做了256 点FFT 变换, 经实验验证, 该设计能够实现图像的实时处理, 代码达到了预期设计效果。
图4 系统功能仿真
图5 场信号实测图
3 结语
采用Himax 的LCoS 屏HX7308BTJFA 作为显示器件, 其尺寸为14. 43 mm 10. 69 mm, 大小可跟1 枚1 元硬币相比拟, 很容易实现三维投影微显示。因Verilog HDL 有很强的可移植性, 便于以后对代码的升级和维护。FPGA 内部资源毕竟有限, 文中叙述可知, 若显示分辨率较大的图像, 光靠内部资源实现异步FIFO是不可能的, 所以在此提出两种方案: 第一, 换一片性能较高的芯片, 满足写FIFO 速率等于读FIFO 速率的要求, 这样就能达到读/ 写数据的动态平衡, 保证了图像的连续显示; 第二, 采用外部存储器SDRAM 存储源图像和FFT 处理后的数据, 采用DDRII 技术读取数据, 使读/ 写FIFO 的速率匹配。受FPGA 芯片资源限制, 该设计采用分辨率为176 144 的图像进行了系统功能验证, 尚未实现图像滤波以及FFT 逆变换, 未来可将代码移植在高端的FPGA 芯片上继续开发数据处理功能。
- 在采用FPGA设计DSP系统中仿真的重要性 (06-21)
- 基于 DSP Builder的FIR滤波器的设计与实现(06-21)
- 基于FPGA的快速并行FFT及其在空间太阳望远镜图像锁定系统中的应用(06-21)
- 3DES算法的FPGA高速实现(06-21)
- 用FPGA实现FFT算法(06-21)
- FPGA的DSP性能揭秘(06-16)