DDS直接数字频率合成技术在铁路信号系统中的应用
的只读存储器。正弦查找表中固化了对一个满周期标准正弦信号以系统时钟频率为采样频率,采样点数为2N(N:相位累加器位数)的波形取样值(二进制编码)。
DDS中的数模转换器用于把正弦查找表输出的正弦信号数字幅值转换为模拟幅值。
低通平滑滤波器可以滤除DDS系统时钟引入的高频干扰以及由于DDS内部相位累加器输出相位需要截断固有特性导致的加性相位噪声。
硬件设计
图4 系统硬件
· 主控CPU
选用ATMEL 精简指令集AVR MEGA128芯片。主要完成与上位中央逻辑控制单元的双向高速安全串行数据通信,实现列控信息的差错控制和数据帧打包成型;基于对列控数据软件判断处理,以基带调制信号周期为间隔,动态刷新DDS芯片控制寄存器,直接实现正弦形式的铁路2FSK信号正/反向双路输出,供给后级差分放大器使用。完成输出信号的状态回采、闭环检查,以校核输出2FSK信号的关键参数指标是否达标。
· 安全串行通信接口
通信接口主要由Philips SJA1000及外围电路构成。主要完成上位逻辑控制单元与主控CPU之间安全数据交换,接口协议灵活。实际应用中采用了双重冗余的CAN总线方式,确保数据交换安全可靠。
· 看门狗复位电路
外置硬件看门狗选用MAX1232芯片。主要完成程序由于干扰“跑飞”进入死循环之后,输出复位脉冲,迫使CPU重新从程序原点恢复执行,提高系统的抗干扰能力。
· DDS直接数字频率合成器
选用AD7008 DDS芯片及外围元件构成。DDS芯片被设置成FSK工作模式。在FSK模式下,其输出信号频率是频率控制寄存器(FCR)0、1以及FSK控制输入引脚FSELECT状态的函数。当FSELECT引脚为低电平时,输出边频f1(FCR1控制),当FSELECT引脚为高电平时,输出边频f2(FCR2控制),只要 严格遵循铁路2FSK信号基带调制信号与边频信号频率依存关系,选择适当的边频频率,并且利用基带调制信号控制FSELECT引脚电平状态即可实现。根据DDS的特点,边频的切换是瞬时完成的(ns级),并且新的输出频率相位累加起点是前一频率的相位累加终点,因此可以保持频率切换点的边频相位连续性,符合铁路2FSK信号的技术特点。关于频率控制寄存器设置数值,可以根据公式(6)确定。
· 差分放大
由INA118差分放大器及外围电路构成。主要完成DDS输出正/反向2FSK信号的处理,抑制2FSK信号中的共模成分,提高信号纯度。同时通过调整外置的电压增益电阻,使输出2FSK信号的电平幅度达到相关技术要求。并确保外部增益电阻在断路故障或阻值增大条件下,差分输出端信号幅值不增加,成衰减趋势,从而满足核心系统故障导向安全的功能需求。
· 缓冲放大器
由BUF634芯片及外围电路构成。主要完成在保持输出2FSK信号电平恒定不变的条件下,仅对信号的电流进行放大,增强信号对后级电路的驱动能力。
· 状态回采模块
由光耦、运放电路等构成。主要完成输出2FSK信号的再采集、隔离整形与输入,实现信号的实时闭环检查,提高系统的安全性。
软件设计
为了满足可靠性、安全性和实时性的要求,系统软件采用了汇编语言编写源代码,并且采取了一些措施提高软件的抗干扰能力,例如:软件陷阱、指令冗余、关键数据的备份以及差错校验等,系统软件流程示于图5。
图5 系统软件流程
测试结果及结论
实验室环境下内对该项成果进行了测试,包括载频精度、低频精度、低通滤波器通频带以及边频的切换时延等指标。结果表明:信号精度和实时性完全可以满足现场要求,相对误差均控制在10-5~10-6范围内。 采用DDS技术的铁路专用2FSK信号发送模块,可以实现使用同一硬件平台,完成我国铁路包括UM71、ZPW2000A、国产移频等不同类型列控信息输出的功能。目前,该项成果已在工程现场得到应用,运行稳定。相对于其他方式的设计,例如FPGA、PLL频率合成、虚拟仪表等,该方案具有明显的优点:嵌入式设计、性能稳定、硬件紧凑、性价比高等。尤其是在研制过程中所采用的设计思路实现了通用化多变量控制的2FSK数字信号调制,对于其他数据通信应用领域也具有一定的借鉴意义。
参考文献:
1. 费锡康,无绝缘轨道电路原理及分析,中国铁道出版社,1993: 97~109
2. 王立宁、乐光新,MATLAB与通信仿真,人民邮电出版社,2000:340~349
3. DDS Data Manual,American Analog Device International Corporation,1995: 1-16
DDS 铁路信号 直接数字频率合成 频移键控 200809 相关文章:
- DDS函数信号发生器的优点(09-28)
- 基于DSP与AD9852的任意信号发生器 (11-03)
- 基于DSP Builder的DDS设计及其FPGA实现(11-03)
- 基于AD9858的线性调频源设计(11-03)
- 基于DDS的高分辨率信号发生器的实现(11-04)
- 基于FPGA的DDS调频信号的研究与实现 (11-04)